The fibers in injection molded FRP provide the material's strength and stiffness; however, they also supply many of the problems. Preferential orientation of fibers during molding can reduce strength and stiffness below expected values in critical directions, or induce warpage in thin walled sections. Makers of short fiber reinforced injection molded products typically use computer aided engineering packages to optimize product performance and manufacturing variables. However, the reliability of the fiber orientation simulation can be limited, and the method is not easily understood, making an assessment of accuracy for a given situation difficult. In addition, the structural module of flow analysis packages is often a basic package with many features missing. This paper presents a structural analysis system for injection molded parts made of short fiber reinforced plastics. A full‐featured commercial structural analysis code is interfaced with a flow analysis program using a practical material model that takes into account the effects of local fiber orientation. The system is completely open to the user, and can be modified as required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.