The Image Biomarker Standardization Initiative validated consensus-based reference values for 169 radiomics features, thus enabling calibration and verification of radiomics software. Key results: • research teams found agreement for calculation of 169 radiomics features derived from a digital phantom and a human lung cancer on CT scan. • Of these 169 candidate radiomics features, good to excellent reproducibility was achieved for 167 radiomics features using MRI, 18F-FDG PET and CT images obtained in 51 patients with soft-tissue sarcoma.
Image features need to be robust against differences in positioning, acquisition and segmentation to ensure reproducibility. Radiomic models that only include robust features can be used to analyse new images, whereas models with non-robust features may fail to predict the outcome of interest accurately. Test-retest imaging is recommended to assess robustness, but may not be available for the phenotype of interest. We therefore investigated 18 combinations of image perturbations to determine feature robustness, based on noise addition (N), translation (T), rotation (R), volume growth/shrinkage (V) and supervoxel-based contour randomisation (C). Test-retest and perturbation robustness were compared for combined total of 4032 morphological, statistical and texture features that were computed from the gross tumour volume in two cohorts with computed tomography imaging: I) 31 non-small-cell lung cancer (NSCLC) patients; II): 19 head-and-neck squamous cell carcinoma (HNSCC) patients. Robustness was determined using the 95% confidence interval (CI) of the intraclass correlation coefficient (1, 1). Features with CI ≥ 0:90 were considered robust. The NTCV, TCV, RNCV and RCV perturbation chain produced similar results and identified the fewest false positive robust features (NSCLC: 0.2–0.9%; HNSCC: 1.7–1.9%). Thus, these perturbation chains may be used as an alternative to test-retest imaging to assess feature robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.