Transplantation of pancreatic islets is emerging as a successful treatment for type-1 diabetes. Its current stringent restriction to patients with critical metabolic lability is justified by the long-term need for immunosuppression and a persistent shortage of donor organs. We developed an oxygenated chamber system composed of immune-isolating alginate and polymembrane covers that allows for survival and function of islets without immunosuppression. A patient with type-1 diabetes received a transplanted chamber and was followed for 10 mo. Persistent graft function in this chamber system was demonstrated, with regulated insulin secretion and preservation of islet morphology and function without any immunosuppressive therapy. This approach may allow for future widespread application of cell-based therapies.β-cell replacement | immune barrier | oxygenation T he transplantation of isolated islets of Langerhans has evolved into a successful method to restore endogenous insulin secretion and stabilize glycemic control without the risk of hypoglycemia (1, 2). However, due to persistent lack of human donor pancreata and the requirement of chronic immune suppression to prevent graft rejection through allo-and autoimmunity, the indication for islet transplantation is restricted to patients with complete insulin deficiency, critical metabolic lability, and repeated severe hypoglycemia despite optimal diabetes management and compliance (3). Furthermore, progressive loss of islet function over time due to chronic hypoxia and inflammatory processes at the intraportal transplantation site remain additional unresolved challenges in islet transplantation (4, 5).When islets are immune-isolated, the lack of oxygen impairs the survival and long-term function of the cells. Experimental approaches to overcome this impediment have involved the implantation of hypoxia-resistant islets, stimulation and sprouting of vessels, and the use of islets designed to contain an intracellular oxygen carrier as well as local oxygen production by electrochemical processes or photosynthesis (6). However, so far, none of these methods have been capable of guaranteeing an adequate physiological oxygen concentration or to allow, at the same time, an adequate immunoprotective environment. To overcome these major obstacles, we have developed a strategy for islet macroencapsulation that provides sufficient immune isolation and permits endogenously regulated islet graft function. Here we demonstrate a system that allows a controlled oxygen supply to the islet graft by means of an integrated oxygen reservoir that can be refilled regularly and can maintain oxygen pressure. Earlier we demonstrated that a sufficient supply of oxygen for maintaining optimal islet function can simultaneously ensure functional potency and immunoprotective characteristics of the device. After application of this bioartificial pancreas system in allogeneic and xenogeneic preclinical diabetes models (7-9) the method was then applied to allogeneic human islet transplantation in an ind...
Islet transplantation is a feasible therapeutic alternative for metabolically labile patients with type 1 diabetes. The primary therapeutic target is stable glycemic control and prevention of complications associated with diabetes by reconstitution of endogenous insulin secretion. However, critical shortage of donor organs, gradual loss in graft function over time, and chronic need for immunosuppression limit the indication for islet transplantation to a small group of patients. Here we present a promising approach to address these limitations by utilization of a macrochamber specially engineered for islet transplantation. The s.c. implantable device allows for controlled and adequate oxygen supply and provides immunological protection of donor islets against the host immune system. The minimally invasive implantable chamber normalized blood glucose in streptozotocin-induced diabetic rodents for up to 3 mo. Sufficient graft function depended on oxygen supply. Pretreatment with the growth hormone-releasing hormone (GHRH) agonist, JI-36, significantly enhanced graft function by improving glucose tolerance and increasing β-cell insulin reserve in rats thereby allowing for a reduction of the islet mass required for metabolic control. As a result of hypervascularization of the tissue surrounding the device, no relevant delay in insulin response to glucose changes has been observed. Consequently, this system opens up a fundamental strategy for therapy of diabetes and may provide a promising avenue for future approaches to xenotransplantation. treatment of diabetes | immune isolation | beta cells
Background Among asymptomatic patients with severe carotid artery stenosis but no recent stroke or transient cerebral ischaemia, either carotid artery stenting (CAS) or carotid endarterectomy (CEA) can restore patency and reduce long-term stroke risks. However, from recent national registry data, each option causes about 1% procedural risk of disabling stroke or death. Comparison of their long-term protective effects requires large-scale randomised evidence.Methods ACST-2 is an international multicentre randomised trial of CAS versus CEA among asymptomatic patients with severe stenosis thought to require intervention, interpreted with all other relevant trials. Patients were eligible if they had severe unilateral or bilateral carotid artery stenosis and both doctor and patient agreed that a carotid procedure should be undertaken, but they were substantially uncertain which one to choose. Patients were randomly allocated to CAS or CEA and followed up at 1 month and then annually, for a mean 5 years. Procedural events were those within 30 days of the intervention. Intention-to-treat analyses are provided. Analyses including procedural hazards use tabular methods. Analyses and meta-analyses of non-procedural strokes use Kaplan-Meier and log-rank methods. The trial is registered with the ISRCTN registry, ISRCTN21144362.
Islet transplantation as a biological β-cell replacement therapy has emerged as a promising option for achieving restoration of metabolic control in type 1 diabetes patients. However, partial or complete loss of islet graft function occurs in relatively short time (months to few years) after implantation. The high rate of early transplant dysfunction has been attributed to poorly viable and/or functional islets and is mediated by innate inflammatory response at the intravascular (hepatic) transplant site and critical lack of initial nutrient/oxygen supply prior to islet engraftment. In addition, the diabetogenic effect of mandatory immunosuppressive agents, limited control of alloimmunity, and the recurrence of autoimmunity limit the long-term success of islet transplantation. In order to abrogate instant blood-mediated inflammatory reaction and to provide oxygen supply for the islet graft, we have developed an extravascular (subcutaneous) transplant macrochamber (the 'βAir' device). This device contains islets immobilized in alginate, protected from the immune system by a thin hydrophilized teflon membrane impregnated with alginate and supplied with oxygen by daily refueling with oxygen-CO (2) mixture. We have demonstrated successful utilization of the oxygen-refueling macrochamber for sustained islet viability and function as well as immunoprotection after allogeneic subcutaneous transplantation in healthy minipigs. Considering the current limitations of intraportal islet engraftment and the restricted indication for islet transplantation mainly due to necessary immunosuppressive therapy, this work could very likely lead to remarkable improvements in the procedure and moreover opens up further strategies for porcine islet cell xenotransplantation.
Transplantation of pancreatic islets for treating type 1 diabetes is restricted to patients with critical metabolic lability resulting from the need for immunosuppression and the shortage of donor organs. To overcome these barriers, we developed a strategy to macroencapsulate islets from different sources that allow their survival and function without immunosuppression. Here we report successful and safe transplantation of porcine islets with a bioartificial pancreas device in diabetic primates without any immune suppression. This strategy should lead to pioneering clinical trials with xenotransplantation for treatment of diabetes and, thereby, represents a previously unidentified approach to efficient cell replacement for a broad spectrum of endocrine disorders and other organ dysfunctions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.