for teleoperation tasks requiring high control accuracy, it is essential to provide teleoperators with information on the interaction between the end effector and the remote environment. Real-time imaging devices have been widely adopted, but it delivers limited information, especially when the end effectors approach the target following the line-of-sight. In such situations, teleoperators rely on the perspective at the screen and can apply high force unintentionally at the initial contact. This research proposes to deliver the distance information at teleoperation to the fingertips of teleoperators, i.e., proximity sensation. Transcutaneous electrical stimulation was applied onto the fingertips of teleoperators, with the pulsing frequency inversely proportional to the distance. The efficacy of the proximity sensation was evaluated by the initial contact force during telerobotic pinch in three sensory conditions: vision only, vision + visual assistance (distance on the screen), and vision + proximity sensation. The experiments were repeated at two viewing angles: 30-60° and line-of-sight, for eleven healthy human subjects. For both cases, the initial contact force could be significantly reduced by either visual assistance (20-30%) or the proximity sensation (60-70%), without additional processing time. The proximity sensation is two-to-three times more effective than visual assistance regarding the amount of force reduction. open Scientific RepoRtS | (2020) 10:163 | https://doi.org/10.1038/s41598-019-56985-9www.nature.com/scientificreports www.nature.com/scientificreports/ or more grippers 7,8 to form triangulation. When the vision is blocked or unclear due to anatomical structures, blood, or instruments, which is often the case, the camera cannot capture the approaching motion properly. Further, understanding visual feedback for use in fingertip manipulations needs significant cognitive involvement and processing time to interpret the real-time video, which can be a high burden to the teleoperators who need to handle multiple tasks demanding continuous decision making during the teleoperation. The intrinsic visual-proprioceptive mapping error is another challenge, because even the high-resolution visual feedback may not be effective with the visual-proprioceptive mapping error 9,10 .The lack of reliable sensory feedback during the approach phase can result in higher force than the desired at the moment of contact between the end effector under teleoperation and the target objects, potentially disturbing subsequent manipulations or permanently damaging sensitive objects 11,12 . A high level of concentration is required to address this issue 13,14 , but it is still challenging to accurately estimate the necessary information and to complete the task on a timely basis. As an alternative, visual assistance displaying texts or numbers on the screen and virtual reality have shown their efficacy for fine force control during robotic surgery [15][16][17][18][19] . The efficacy of visual assistance in improving control a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.