We design a scalable algorithm to privately generate location heatmaps over decentralized data from millions of user devices. It aims to ensure differential privacy before data becomes visible to a service provider while maintaining high data accuracy and minimizing resource consumption on users’ devices. To achieve this, we revisit distributed differential privacy based on recent results in secure multiparty computation, and we design a scalable and adaptive distributed differential privacy approach for location analytics. Evaluation on public location datasets shows that this approach successfully generates metropolitan-scale heatmaps from millions of user samples with a worstcase client communication overhead that is significantly smaller than existing state-of-the-art private protocols of similar accuracy.
Privacy protection is paramount in conducting health research. However, studies often rely on data stored in a centralized repository, where analysis is done with full access to the sensitive underlying content. Recent advances in federated learning enable building complex machine-learned models that are trained in a distributed fashion. These techniques facilitate the calculation of research study endpoints such that private data never leaves a given device or healthcare system. We show—on a diverse set of single and multi-site health studies—that federated models can achieve similar accuracy, precision, and generalizability, and lead to the same interpretation as standard centralized statistical models while achieving considerably stronger privacy protections and without significantly raising computational costs. This work is the first to apply modern and general federated learning methods that explicitly incorporate differential privacy to clinical and epidemiological research—across a spectrum of units of federation, model architectures, complexity of learning tasks and diseases. As a result, it enables health research participants to remain in control of their data and still contribute to advancing science—aspects that used to be at odds with each other.
We design a scalable algorithm to privately generate location heatmaps over decentralized data from millions of user devices. It aims to ensure differential privacy before data becomes visible to a service provider while maintaining high data accuracy and minimizing resource consumption on users' devices. To achieve this, we revisit the distributed differential privacy concept based on recent results in the secure multiparty computation field and design a scalable and adaptive distributed differential privacy approach for location analytics. Evaluation on public location datasets shows that this approach successfully generates metropolitan-scale heatmaps from millions of user samples with a worst-case client communication overhead that is significantly smaller than existing state-of-the-art private protocols of similar accuracy.
Privacy protection is paramount in conducting health research. However, studies often rely on data stored in a centralized repository, where analysis is done with full access to the sensitive underlying content. Recent advances in federated learning enable building complex machine-learned models that are trained in a distributed fashion. These techniques facilitate the calculation of research study endpoints such that private data never leaves a given device or healthcare system. We show on a diverse set of health studies that federated models can achieve the same level of accuracy, precision, and generalizability, and result in the same interpretation as standard centralized statistical models whilst achieving significantly stronger privacy protections. This work is the first to apply modern and general federated learning methods to clinical and epidemiological research -- across a spectrum of units of federation and model architectures. As a result, it enables health research participants to remain in control of their data and still contribute to advancing science -- aspects that used to be at odds with each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.