Oligomers and polymers (film, fabrics) of the linear aromatic polyester poly(trimethylene terephthalate) (PTT) were treated with polyesterases from Thermomyces lanuginosus, Penicillium citrinum, Thermobifida fusca and Fusarium solani pisi. The cutinase from T. fusca was found to release the highest amounts of hydrolysis products from PTT materials and was able to open and hydrolyse a cyclic PTT dimer according to RP-HPLC-UV detection. In contrast, the lipase from T. lanuginosus also showed activity on the PTT fibres and on bis(3-hydroxypropyl) terephthalate (BHPT) but was not able to hydrolyse the polymer film, mono(3-hydroxypropyl) terephthalate (MHPT) nor the cyclic dimer of PTT. As control enzymes inhibited with mercury chloride were used. Surface hydrophilicity changes were investigated with contact angle measurements and the degree of crystallinity changes were determined with DSC.
SummaryThe dynamic recrystallization as well as meta-dynamic and static recrystallization of the nickel-based alloy 80A was investigated by means of electron backscatter diffraction (EBSD). Specimens were hot compressed at a temperature of 1120• C and a strain rate of 0.1/s at varying strain and soak times to describe the recrystallization behaviour. Various approaches were tested in order to differentiate between recrystallized and deformed grains based on EBSD data. The grain orientation spread was clearly found to be the most reliable procedure. A high twinning of the recrystallized grains was observed, and as a consequence the measured grain size was strongly dependent on whether the coherent and incoherent twin boundaries were regarded as genuine boundaries or removed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.