This study aimed to clarify whether the light condition-dependent changes in the redox state and subcellular distribution of glutathione were similar in the dicotyledonous model plant Arabidopsis (wild-type, ascorbate- and glutathione-deficient mutants) and the monocotyledonous crop species wheat (Chinese Spring variety). With increasing light intensity, the amount of its reduced (GSH) and oxidized (GSSG) form and the GSSG/GSH ratio increased in the leaf extracts of both species including all genotypes, while far-red light increased these parameters only in wheat except for GSH in the GSH-deficient Arabidopsis mutant. Based on the expression changes of the glutathione metabolism-related genes, light intensity influences the size and redox state of the glutathione pool at the transcriptional level in wheat but not in Arabidopsis. In line with the results in leaf extracts, a similar inducing effect of both light intensity and far-red light was found on the total glutathione content at the subcellular level in wheat. In contrast to the leaf extracts, the inducing influence of light intensity on glutathione level was only found in the cell compartments of the GSH-deficient Arabidopsis mutant, and far-red light increased it in both mutants. The observed general and genotype-specific, light-dependent changes in the accumulation and subcellular distribution of glutathione participate in adjusting the redox-dependent metabolism to the actual environmental conditions.
Infection of plants by Zucchini Yellow Mosaic Virus (ZYMV) induces severe ultrastructural changes. The aim of this study was to investigate ultrastructural changes during ZYMV-infection in Cucurbita pepo L. plants on the two and three dimensional (2D and 3D) level and to correlate these changes with the spread of ZYMV throughout the plant by transmission electron microscopy (TEM) and image analysis.This study revealed that after inoculation of the cotyledons ZYMV moved into roots [3 days post inoculation (dpi)], then moved upwards into the stem and apical meristem (5 dpi), then into the first true leaf (7 dpi) and could finally be found in all plant parts (9 dpi). ZYMV-infected cells contained viral inclusion bodies in the form of cylindrical inclusions (CIs). These CIs occurred in four different forms throughout the cytosol of roots and leaves: scrolls and pinwheels when cut transversely and long tubular structures and bundles of filaments when cut longitudinally. 3D reconstruction of ZYMV-infected cells containing scrolls revealed that they form long tubes throughout the cytosol. The majority has a preferred orientation and an average length and width of 3 μm and 120 nm, respectively. Image analysis revealed an increased size of cells and vacuoles (107% and 447%, respectively) in younger ZYMV-infected leaves leading to a similar ratio of cytoplasm to vacuole (about 1:1) in older and younger ZYMV-infected leaves which indicates advanced cell growth in younger tissues. The collected data advances the current knowledge about ZYMV-induced ultrastructural changes in Cucurbita pepo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.