Abstract-We introduce a novel set of social network analysis based algorithms for mining the Web, blogs, and online forums to identify trends and find the people launching these new trends. These algorithms have been implemented in Condor, a software system for predictive search and analysis of the Web and especially social networks. Algorithms include the temporal computation of network centrality measures, the visualization of social networks as Cybermaps, a semantic process of mining and analyzing large amounts of text based on social network analysis, and sentiment analysis and information filtering methods. The temporal calculation of betweenness of concepts permits to extract and predict long-term trends on the popularity of relevant concepts such as brands, movies, and politicians. We illustrate our approach by qualitatively comparing Web buzz and our Web betweenness for the 2008 US presidential elections, as well as correlating the Web buzz index with share prices. Social network analysis, semantic social network analysis, trend prediction, Web mining
We introduce a novel set of social network analysis based algorithms for mining the Web, blogs, and online forums to identify trends and find the people launching these new trends. These algorithms have been implemented in Condor, a software system for predictive search and analysis of the Web and especially social networks. Algorithms include the temporal computation of network centrality measures, the visualization of social networks as Cybermaps, a semantic process of mining and analyzing large amounts of text based on social network analysis, and sentiment analysis and information filtering methods. The temporal calculation of betweenness of concepts permits to extract and predict long-term trends on the popularity of relevant concepts such as brands, movies, and politicians. We illustrate our approach by qualitatively comparing Web buzz and our Web betweenness for the 2008 US presidential elections, as well as correlating the Web buzz index with share prices. Social network analysis, semantic social network analysis, trend prediction, Web mining I.2009 International Conference on Computational Science and Engineering 978-0-7695-3823-5/09 $26.00
In this paper we analyze the success of startups in Germany by looking at the social network structure of their founders on the German-language business-networking site XING. We address two related research questions. First we examine university-wide networks, constructing alumni networks of 12 German universities, with the goal of identifying the most successful founder networks among the 12 universities. Second, we also look at individual actor network structure, to find the social network attributes of the most successful founders.We automatically collected the publicly accessible portion of XING, filtering people by attributes indicative of their university, and roles as founders, entrepreneurs, and CEOs. We identified 51,976 alumni, out of which 14,854 have entrepreneurship attributes. We also manually evaluated the financial success of a subsample of 80 entrepreneurs for each university.We found that universities, which are more central in the German university network, provide a better environment for students to found more and more successful startups. University networks whose alumni have a stronger "old-boys-network", i.e. a larger share of their links with other alumni of their alma mater, are more successful as founders of startups. On the individual level the same holds true: the more links founders have with alumni of their university, the more successful their startup is. Finally, the absolute amount of networking matters, i.e. the more links entrepreneurs have, and the higher their betweenness in the online network of university alumni, the more successful they are.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.