The Washington Cascade Range is a complex, polygenetic mountain range that dominates the topographic, climatic, and cultural configurations of Washington State. Although it has been the locus of ongoing arc magmatism since the Eocene, most of the range is distinct from the southern part of the arc in Oregon and California in that bedrock uplift has produced high surface elevations and topographic relief, rather than volcanic burial or edifice construction. (U-Th)/He and fission-track ages of bedrock samples on the east flank of the range record relatively rapid cooling in the early Tertiary, but slow exhumation rates (ϳ0.2 km/m.y.) through most of the Oligocene. Samples on the west flank suggest rapid cooling in the late Miocene (8-12 Ma), and age variations in vertical transects are consistent with a pulse of rapid exhumation (0.5-1.0 km/m.y.) at that time. Apatite He ages as young as 1-5 Ma in several areas suggest that high cooling and possibly exhumation rates persist locally. Accelerated exhumation rates ca. 10 Ma are also observed in the Coast Mountains of British Columbia and southeast Alaska, ϳ1500 km to the north, suggesting a large-scale mechanism for the exhumation pulse at that time.
The Dabie Shan of eastern China is a ϳ200 kilometers wide mountain range with nearly 2 kilometers of relief and is an archetype of deep ultrahigh-pressure metamorphic rock exhumation. Despite its regional and petrologic importance, little is known about the low-temperature and post-orogenic evolution of the Dabie Shan. Here we present apatite and zircon (U-Th)/He (AHe and ZHe, respectively) and apatite fission-track (AFT) cooling ages from the Dabie Shan that constrain the patterns and history of exhumation over the last ϳ115 myr. On the scale of the whole orogen, ZHe and AHe ages are inversely correlated with mean elevation and are systematically younger in the core of the range. These cooling ages were converted to exhumation rates assuming steady-state erosion and accounting for topographic effects. These results indicate that, since the Eocene, flanks of the range have eroded at rates as low as 0.02 km/myr, while the range core has eroded at about 0.06 km/myr. Even in the core of the range, these recent exhumation rates are at least 10 to 20 times slower than those estimated for the initial stages of exhumation in the Triassic-Jurassic. In a 1.4 kilometer vertical transect in the core of the range, all ages are positively correlated with elevation, with ZHe ages increasing from 76 to 112 Ma, AFT from 44 to 70 Ma, and AHe from 24 to 43 Ma. We present a simple model for topographic correction of thermochronometric ages in vertical transects, using the admittance ratio (ratio of isotherm relief to topographic relief). Applied to the AHe age-elevation relationship, this yields Tertiary exhumation rates of 0.05 to 0.07 km/myr in the core of the Dabie Shan, in good agreement with regional exhumation rate patterns. Finally, age-elevation relationships for all three chronometers in the vertical transect are consistent with a constant exhumation rate of 0.06 ؎ 0.01 km/myr since the Cretaceous, with a possible modest increase in exhumation rates (as high as 0.2 km/myr) between 80 to 40 Ma. These data show no evidence for significant variations in exhumation rates over the last ϳ115 myr, as might be expected for decay of old topography or tectonic reactivation of old structures. introduction Collisional orogenies typically produce topographic and geophysical anomalies persisting several hundred million years. The post-orogenic evolution of mountain ranges and their responses to erosion and subsequent tectonic events provides insights to a variety of problems, including the deep crustal architecture of orogens, dynamics of lithospheric roots, and the erosional decay of topographic anomalies. Typically, the topographic and structural decay of an ancient mountain range is not monotonic, and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.