Telomere length in human cells is controlled by a homeostasis mechanism that involves telomerase and the negative regulator of telomere length, TRF1 (TTAGGG repeat binding factor 1). Here we report that TRF2, a TRF1-related protein previously implicated in protection of chromosome ends, is a second negative regulator of telomere length. Overexpression of TRF2 results in the progressive shortening of telomere length, similar to the phenotype observed with TRF1. However, while induction of TRF1 could be maintained over more than 300 population doublings and resulted in stable, short telomeres, the expression of exogenous TRF2 was extinguished and the telomeres eventually regained their original length. Consistent with their role in measuring telomere length, indirect immunofluorescence indicated that both TRF1 and TRF2 bind to duplex telomeric DNA in vivo and are more abundant on telomeres with long TTAGGG repeat tracts. Neither TRF1 nor TRF2 affected the expression level of telomerase. Furthermore, the presence of TRF1 or TRF2 on a short linear telomerase substrate did not inhibit the enzymatic activity of telomerase in vitro. These findings are consistent with the recently proposed t loop model of telomere length homeostasis in which telomerasedependent telomere elongation is blocked by sequestration of the 3 telomere terminus in TRF1-and TRF2-induced telomeric loops.The length of mammalian telomeres is governed by a homeostasis mechanism. Telomeres have a species-specific length setting (26) which is constant over the generations, despite high levels of telomerase activity in the germline (47). For instance, the telomeres of Mus musculus are maintained at 20 to 50 kb, while the closely related mouse species Mus spretus has telomeric tracts closer in length to human telomeres, usually ranging from 5 to 15 kb. Similarly, despite high levels of telomerase, the telomeres of many human tumor cell lines do not grow but are stably maintained at a setting characteristic for each individual cell line (12,13,44). Telomere length homeostasis is also evident when new telomeres are generated by transfection of short stretches of telomeric DNA into cultured cells. The transfected telomeric tracts are elongated, presumably by telomerase, until their length matches the other telomeres in the transfected cells (3,23,43). The new telomere presumably recruits telomere binding proteins and so attains all functions of telomeres, including the length regulation characteristic of a given cell. Regulated growth of a single telomere, as observed in this context, suggests that cells can measure and modulate the length of the telomeric repeat array at individual chromosome ends, implying a cis-acting regulatory mechanism.Human telomeres contain two related TTAGGG repeat binding factors, TRF1 and TRF2 (7, 10, 11). Both TRF proteins have a Myb-like helix-turn-helix domain in their carboxy terminus and a central conserved domain that includes sequences responsible for the formation of homodimers. The two proteins do not heterodimerize, and ...
Nucleotide-sugar transporters (NSTs) are critical components of glycosylation pathways in eukaryotes. The identification of structural elements that are involved in NST functions provides an important task. Chinese hamster ovary glycosylation mutants defective in nucleotide-sugar transport provide access to inactive transporters that can define such structure/function relationships. In this study, we have cloned the hamster UDP-galactose transporter (UGT) and identified defects in UGT gene transcripts from nine independent Chinese hamster ovary mutants that belong to the Lec8 complementation group. Reverse transcription polymerase chain reaction with primers that span the UGT open reading frame showed that three Lec8 mutants express a full-length open reading frame, while six Lec8 mutants predominantly express truncated UGT gene transcripts. Sequencing identified different single or triplet nucleotide changes in full-length UGT transcripts from three of the mutants. These mutations translate into three different amino acid changes at positions that are highly conserved in all the known mammalian NSTs. Transfection of a cDNA encoding either of the mutations ⌬serine 213 or G281D failed to correct the UDP-galactose transport defect in Lec8 transfectants. Most importantly, introducing these same mutations into the homologous region of the murine CMP-sialic acid transporter caused inactivation of this transporter. Thus, identifying point mutations that inactivate UGT in Lec8 mutants resulted in the discovery of amino acids that are critical to the activity of both UGT and CST, the two most divergent mammalian NSTs.
Mammalian chromosome ends contain long arrays of TTAGGG repeats that are complexed to a telomere specific protein, the TTAGGG repeat binding factor, TRF1. Here we describe the characterization of genes encoding the human and mouse TRF1 proteins, hTRF1 and mTRF1. The mTRF1 cDNA was isolated based on sequence similarity to the hTRF1 cDNA and the mTRF1 mRNA was shown to be ubiquitously expressed as a single 1.9 kb polyadenylated transcript in mouse somatic tissues. High levels of a 2.1 kb transcript were found in testes. In vitro translation of the mTRF1 cDNA resulted in a 56 kDa protein that binds to TTAGGG repeat arrays. mTRF1 displayed the same sequence specificity as hTRF1, preferring arrays of TTAGGG repeats as a binding substrate over TTAGGC and TTGGGG repeats. Expression of an epitope-tagged version of mTRF1 showed that the protein is located at the ends of murine metaphase chromosomes. In agreement, conceptual translation indicated that mTRF1 and hTRF1 are similarly-sized proteins with nearly identical C-terminal Myb-related DNA binding motifs. In addition, comparison of the predicted mTRF1 and hTRF1 amino acid sequences showed that the acidic nature of the N-terminus of TRF1 is conserved and revealed a highly conserved novel domain of approximately 200 amino acids in the middle of the proteins. However, other regions of the proteins are poorly conserved (<35% identity) and the overall level of identity of the mTRF1 and hTRF1 amino acid sequences is only 67%. The TRF1 genes are not syntenic; the hTRF1 gene localized to human chromosome 8 band q13 while the mTRF1 gene localized to mouse chromosome 17 band E3. The data indicate that the genes for mammalian telomeric proteins evolve rapidly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.