Finite-difference time-domain is a numerical method used for modelling of computational electrodynamics. The method is resource intensive, especially regarding memory usage. Multiple memory accesses are required per single computation so memory bandwidth acts as a bottleneck limiting the overall performance. Existing solutions use either fixedpoint or floating-point arithmetic, depending on the complexity of the target platform, to model the data. Floating-point requires less memory access but the computation is more intensive due to the normalisation. Fixed-point is the oppositesimple computation but with more memory access for the same precision. The novelty of this paper is in the block floatingpoint realization which is the middle ground between the two. The approach is less compute intensive than the floating-point solutions while using less memory than the fixed-point realization. This makes the solution an alternative for bit-exact platforms, such as field-programmable gate arrays. The results are compared to both floating-point and fixed-point implementations and the memory bandwidth and other resources needed for targeted platform are calculated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.