Rapid prototyping (RP) comprises a variety of automated manufacturing techniques such as selective laser sintering (SLS), stereolithography, and three-dimensional printing (3DP), which use virtual 3D data sets to fabricate solid forms in a layer-by-layer technique. Despite a growing demand for (virtual) reconstruction models in daily forensic casework, maceration of the skull is frequently assigned to ensure haptic evidence presentation in the courtroom. Owing to the progress in the field of forensic radiology, 3D data sets of relevant cases are usually available to the forensic expert. Here, we present a first application of RP in forensic medicine using computed tomography scans for the fabrication of an SLS skull model in a case of fatal hammer impacts to the head. The report is intended to show that this method fully respects the dignity of the deceased and is consistent with medical ethics but nevertheless provides an excellent 3D impression of anatomical structures and injuries.
Regarding evaluation of inflammatory diseases of the paranasal sinus this study indicates sufficient accuracy of the proposed CT protocol at a very low dosage level.
When blood reaches an extracorporeal surface, a drying process is initiated. Properties of this drying process may be crucial for the correct assessment of case-specific time lapses, however, there is a lack of systematic studies concerning the drying times of blood. We present a study on drying properties of small blood droplets with a standardized size of 25 μl (resembling droplets originating from pointed and sharp objects, e.g. the tip of a knife) under different environmental conditions to elucidate the effect of different ambient temperatures, indoor surfaces and anticoagulant treatment. As a rule of thumb, wiping a typical small blood droplet will not lead to a macroscopically visible smear after a time period of approximately 60 min (time(min) = 45 min; time(max) = 75 min) at an average room temperature of 20 °C. Alteration of the ambient temperature has a remarkable effect, as the time needed for the drying process leading to wipe resistance of the droplets decreases to 30 min (time(min)) at an ambient temperature of 24 °C, and is prolonged up to >120 min (time(max)) at an ambient temperature of 15 °C. As for the surface materials in our study, significant differences in drying periods were only found between wood and linoleum (80th percentile 45 vs. 75 min). Treatment with anticoagulants did not influence extracorporeal drying times. In synopsis, the present study shows that ambient temperature is a major determinant of the drying process of blood droplets and should always be documented accurately and continuously on a crime scene. In certain situations, an estimation of the time elapsed since bloodstain origination may be of importance to answer questions related to the time course of actions. However, further systematic studies are needed to clarify the effect of other properties such as droplet size, humidity, or evaporation.
In spite of a decreasing number of new releases, New Synthetic Opioids (NSO) are gaining increasing importance in postmortem (PM) forensic toxicology. For the interpretation of analytical results, toxicokinetic (TK) data, e.g. on tissue distribution, are helpful. Concerning NSO, such data are usually not available due to the lack of controlled human studies. Hence, a controlled TK study using pigs was carried out and the tissue distribution of U-47700 and tramadol as reference was examined. Twelve pigs received an intravenous dose of 100 µg/kg body weight (BW) U-47700 or 1000 µg/kg BW tramadol, respectively. Eight hours after administration, the animals were put to death with T61. Relevant organs, body fluids and tissues were sampled. After homogenization and solid-phase extraction, quantification was performed applying standard addition and liquid chromatography-tandem mass spectrometry. At the time of death, the two parent compounds were determined in all analyzed specimens. Regarding U-47700, concentrations were highest in duodenum content, bile fluid and adipose tissue (AT). Concerning tramadol, next to bile fluid and duodenum content, highest concentrations were determined in the lung. Regarding the metabolites, N-desmethyl-U-47700 and O-desmethyltramadol (ODT) were detected in all analyzed specimens except for AT (ODT). Higher metabolite concentrations were found in specimens involved in metabolism. N-desmethyl-U-47700 showed much higher concentrations in routinely analyzed organs (lung, liver, kidney) than U-47700. To conclude, besides the routinely analyzed specimens in PM toxicology, AT, bile fluid and duodenum content could serve as alternative matrices for blood, urine or standard specimens such as kidney or liver. In case of U-47700, quantification of the main metabolite N-desmethyl-U-47700 is highly recommendable.
Postmortem computed tomography (CT) is now routinely performed in forensic autopsies. Microfocus computed tomography (mfCT) has attracted recent attention because it can provide more detailed information than routine postmortem CT can. This feasibility study evaluated the usefulness of mfCT for examination of the hyoid bone and thyroid cartilage in cases of suspected strangulation, where advanced decomposition precludes detection of petechial hemorrhages and hemorrhages adjacent to fractures. The results show that mfCT was useful for identification of thin fracture lines in the fragile laryngeal structures. We suggest that mfCT should be considered for forensic autopsies in cases of suspected strangulation with advanced decomposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.