Often adaptive, distributed control can be viewed as an iterated game between independent players. The coupling between the players' mixed strategies, arising as the system evolves from one instant to the next, is determined by the system designer. Information theory tells us that the most likely joint strategy of the players, given a value of the expectation of the overall control objective function, is the minimizer of a Lagrangian function of the joint strategy. So the goal of the system designer is to speed evolution of the joint strategy to that Lagrangian minimizing point, lower the expectated value of the control objective function, and repeat. Here we elaborate the theory of algorithms that do this using local descent procedures, and that thereby achieve efficient, adaptive, distributed control.PACS numbers:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.