The present work deals with the buckling phenomenon characteristic of highly viscous liquid jets slowly impinging upon a plate. The quasi-one-dimensional equations of the dynamics of thin liquid jets are used as the basis for the theoretical analysis of buckling. With the problem linearized, the characteristic equation is obtained. Its solutions show that instability (buckling) sets in only in the presence of axial compression in the jet, and when the distance between the nozzle exit and the plate exceeds some critical value. The latter is calculated. It is shown that buckling instability corresponds to the rectilinear jet/folding jet bifurcation point. The value of the folding frequency is calculated at the onset of buckling. The theoretical results are compared with Cruickshank & Munson's (1981) and Cruickshank's (1988) experimental data and the agreement is fairly good.
The freezing of a supercooled droplet occurs in two steps: recalescence, that is, a rapid return to thermodynamic equilibrium at the freezing temperature leading to a liquid-solid mixture and a longer stage of complete freezing. The second freezing step can be modelled by the one-phase Stefan problem for an inward solidification of a sphere, assuming the droplet to be spherical. A convective heat transfer with the ambient immiscible fluid is modelled by a mixed boundary condition on the outer surface of the droplet. This condition depends on the Biot number (ratio of the heat transfer resistances inside the droplet and at its surface). A novel asymptotic solution is developed for a small Stefan number and an arbitrary Biot number. Applying the method of matched asymptotic expansions, uniformly valid solutions are obtained for the temperature profile and freezing front evolution in the whole stage of complete freezing. For an infinite Biot number, that is, for a fixed temperature at the droplet outer boundary, known solutions are recovered. In parallel, numerical results are obtained for an arbitrary Stefan number using a finitedifference scheme based on the enthalpy method. The asymptotic and numerical solutions are in good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.