Fine-pored, 45 ppi (pores per linear inch) alumina foams are prepared from ceramic slurries with varying contents of additives (deflocculant, binder) and solid loading following a standardized procedure. Rheological key parameters (yield stress, high-shear viscosity) of the respective slurries are determined by approximation of the experimental flow curves with appropriate rheological models. The resulting ceramic foams are characterized by computed tomography (CT) followed by a morphometric analysis of the reconstruction volume data. The main scope of the work involves the development of a procedure to reliably define the binarization threshold during these morphometric calculations, which is based on the analysis of the differential course of the total porosity results from calculations performed at varying binarization threshold values ("differential thresholding"). A very good match of the CT porosity results with experimental data is achieved, despite the unfavorable CT voxel resolution to foam structure fineness relation. The CT evaluation results are finally correlated to the rheological properties of the respective slurries used in foam manufacturing. The dominant slurry composition parameters are the weight fraction of the ceramic powder and the binder concentration. Increasing binder and solid content result in an increased yield stress and viscosity of the respective dispersion and consequently in a decreased porosity and cell size of the finally manufactured cellular ceramic.
Reticulated ceramic foams are used in a wide range of applications such as filters, catalyst supports, lightweight materials, energy absorptions materials, or as scaffolds for tissue engineering as the most common ones. Based on gaseous foaming processes of polymers, a stochastic distribution of closed pores is obtained. By reticulation processing thin foam windows are removed between cells turning a closed cell into an open cell structure. These foams are used as template for porous ceramics manufacturing: With different processing approaches, for example, with dip coating of a ceramic slurry and a subsequent (multistep) thermal treatment ceramic reticulate foams are obtained. A variety of material properties strongly depend on the cell and strut size, as well on material composition. Functionalization of ceramic foam surfaces (outer surface functionalization), for example, with zeolites or nanosized aggregates lead to an increase of the specific surface area or provides catalytic or heat storage functionality. Filling of struts (inner surface functionalization) may lead to improved mechanical stability or may provide functionalities such as electric conductivity. The present work summarizes the processing steps from the template foam to the final cellular ceramic, functionalization strategies, and the most common characterization techniques.
Infiltration processing of reticulated porous alumina ceramics (RPC) from reticulated foam manufacturing is investigated by micro computed tomography. Infiltration is carried out with colloidal alumina slurries. Successful infiltration is found to be a function of the RPCs starting microstructure and the particle size of the alumina in the colloidal infiltration system. Suitable infiltration conditions are specified. As a result, RPCs with a low relative density show a fivefold compressive strength after infiltration, as compared to their non-infiltrated RPC counterparts. The highest strength of infiltration processed alumina RPCs at a porosity of 90% is found to be 1.6 MPa, and besides a significant increase of the compressive strength, the thermal conductivity is improved to be 1.5 W m À1 K À1 after infiltration.
A novel synthetic approach is presented leading to hitherto unknown nitridosilicates, oxonitridosilicates, oxonitridoaluminosilicates, carbidonitridosilicates, as well as nitridoborates and oxonitridoborates of rare earth elements, alkali, and alkaline earth metals. Typically, the respective metals were reacted with silicon diimide, aluminum nitride, or poly(boron amide imide), respectively, under pure nitrogen atmosphere utilizing a radiofrequency furnace. Usually, the compounds are obtained within short reaction periods as coarsely crystalline products. Zink nitridophosphates of the sodalite structure type were obtained by the reaction of phosphorus nitride imide with zinc or zinc chalcogenides, respectively. Several molecular metal silylamides and imides containing nitridobridges between the metals and silicon were obtained by the reaction of differently chlorinated disilazanes with metal chlorides. During these investigations hitherto unknown bis(trimethylsilyl)ammonium salts have been discovered. Furthermore, we report about the synthesis of N‐silyl metal hydrazides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.