Organic permeable base transistors (OPBTs) are of great interest for flexible electronic circuits, as they offer very large on‐current density and a record‐high transition frequency. They rely on a vertical device architecture with current transport through native pinholes in a central base electrode. This study investigates the impact of pinhole density and pinhole diameter on the DC device performance in OPBTs based on experimental data and TCAD simulation results. A pinhole density of NPin = 54 µm−2 and pinhole diameters around LPin = 15 nm are found in the devices. Simulations show that a variation of pinhole diameter and density around these numbers has only a minor impact on the DC device characteristics. A variation of the pinhole diameter and density by up to 100% lead to a deviation of less than 4% in threshold voltage, on/off current ratio, and sub‐threshold slope. Hence, the fabrication of OPBTs with reliable device characteristics is possible regardless of statistical deviations in thin film formation.
Data on road-killed animals is essential for assessing the impact of roads on biodiversity. In most European countries data on road-killed huntable wildlife exists, but data on other vertebrate species (e.g. amphibians, reptiles, small mammals) is scarce. Therefore, we conducted a citizen science project on road-killed vertebrates as a useful supplement to data on huntable wildlife collected by public authorities. The dataset contains 15198 reports with 17163 individual road-killed vertebrates collected by 912 participants. The reports were made in 44 countries, but the majority of data was reported in Austria. We implemented a data validation routine which led to three quality levels. Reports in quality level 1 are published via GBIF, reports in quality level 2 via Zenodo and reports in quality level 3 were deleted. The dataset is relevant for the scientific community studying impacts of roads on fauna as well as for those who are responsible for road planning and implementing mitigation measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.