The International Terrestrial Reference Frame (ITRF) is derived by combining several space geodetic techniques. Basically, a meaningful combination of the geodesic space techniques is impossible without further geometrical information, i. e. local-ties. Local-tie vectors are defined between the geometrical reference points of space geodetic techniques at co-location stations. These local-ties are introduced during the inter-technique combination process, to overcome the weak physical connection between the space geodetic techniques. In particular, the determination of the reference point of radio telescopes or laser telescopes is a challenging task and requires indirect methods. Moreover, the Global Geodetic Observing System (GGOS) strives for an automated and continued reference point determination with sub-millimeter accuracy, because deviations in local-ties bias global results.This investigation presents a modified approach for automated reference point determination. The new approach extends the prior work of Lösler but evades the synchronization between the terrestrial instrument and the telescope. Thus, synchronization errors are omitted and the technical effort is reduced. A proof of concept was carried out at Geodetic Observatory Wettzell in 2018. Using a high-precision, mobile laser-tracker, the reference point of the Satellite Observing System Wettzell (SOS-W) was derived. An extended version of the in-house developed software package HEIMDALL was employed for a mostly automated data collection. To evaluate the estimated reference point, the derived results are compared with the results of two approved models.
A global geodetic reference system (GGRS) is realized by physical points on the Earth’s surface and is referred to as a global geodetic reference frame (GGRF). The GGRF is derived by combining several space geodetic techniques, and the reference points of these techniques are the physical points of such a realization. Due to the weak physical connection between the space geodetic techniques, so-called local ties are introduced to the combination procedure. A local tie is the spatial vector defined between the reference points of two space geodetic techniques. It is derivable by local measurements at multitechnique stations, which operate more than one space geodetic technique. Local ties are a crucial component within the intertechnique combination; therefore, erroneous or outdated vectors affect the global results. In order to reach the ambitious accuracy goal of 1 mm for a global position, the global geodetic observing system (GGOS) aims for strategies to improve local ties, and, thus, the reference point determination procedures. In this contribution, close range photogrammetry is applied for the first time to determine the reference point of a laser telescope used for satellite laser ranging (SLR) at Geodetic Observatory Wettzell (GOW). A measurement campaign using various configurations was performed at the Satellite Observing System Wettzell (SOS-W) to evaluate the achievable accuracy and the measurement effort. The bias of the estimates were studied using an unscented transformation. Biases occur if nonlinear functions are replaced and are solved by linear substitute problems. Moreover, the influence of the chosen stochastic model onto the estimates is studied by means of various dispersion matrices of the observations. It is shown that the resulting standard deviations are two to three times overestimated if stochastic dependencies are neglected.
The accuracy of today's satellite laser ranging systems (SLR) is limited to a few cm. A significant part of this range error is due to the limitations of the atmospheric correction model. A dual color ranging experiment has been designed to investigate this source of error. When ranging to satellites at the fundamental and second harmonic frequency of a Nd:YAG laser, two different pulse round trip times are obtained simultaneously. The infrared pulse is detected by an avalanche photodiode, operated in the "Geiger mode" , while the green pulse is recorded by a microchannel plate photomultiplier (MCP).For a given satellite pass, the jitter in recording the time of flight of the pulse is too high to calculate an atmospheric correction from individual measurements. Due to the many shots per satellite pass, the scatter can be significantly reduced by applying a nonlinear least squares fitting procedure to the data. The results of a large number of satellite passes are compared with the predictions of the Marini-Murray model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.