Damaged cardiac valves attract blood-borne bacteria, and infective endocarditis is often caused by viridans group streptococci. While such bacteria use multiple adhesins to maintain their normal oral commensal state, recognition of platelet sialoglycans provides an intermediary for binding to damaged valvular endocardium. We use a customized sialoglycan microarray to explore the varied binding properties of phylogenetically related serine-rich repeat adhesins, the GspB, Hsa, and SrpA homologs from Streptococcus gordonii and Streptococcus sanguinis species, which belong to a highly conserved family of glycoproteins that contribute to virulence for a broad range of Gram-positive pathogens. Binding profiles of recombinant soluble homologs containing novel sialic acid-recognizing Siglec-like domains correlate well with binding of corresponding whole bacteria to arrays. These bacteria show multiple modes of glycan, protein, or divalent cation-dependent binding to synthetic glycoconjugates and isolated glycoproteins in vitro. However, endogenous asialoglycan-recognizing clearance receptors are known to ensure that only fully sialylated glycans dominate in the endovascular system, wherein we find these particular streptococci become primarily dependent on their Siglec-like adhesins for glycan-mediated recognition events. Remarkably, despite an excess of alternate sialoglycan ligands in cellular and soluble blood components, these adhesins selectively target intact bacteria to sialylated ligands on platelets, within human whole blood. These preferred interactions are inhibited by corresponding recombinant soluble adhesins, which also preferentially recognize platelets. Our data indicate that circulating platelets may act as inadvertent Trojan horse carriers of oral streptococci to the site of damaged endocardium, and provide an explanation why it is that among innumerable microbes that gain occasional access to the bloodstream, certain viridans group streptococci have a selective advantage in colonizing damaged cardiac valves and cause infective endocarditis.
The secretions of the salivary parotid and submandibular-sublingual (SMSL) glands constitute the main part of whole human saliva (WS) in which proline-rich proteins (PRPs) and mucins represent dominant groups. Although proteome analysis had been performed on WS, no identification of PRPs or mucins by 2-DE and MS was achieved in WS and no comprehensive analysis of both glandular secretions is available so far. The aim of this study was to compare the protein map of WS to parotid and SMSL secretions for the display of PRPs and mucins. WS and glandular secretions were subjected to 2-DE and spots were analyzed by MALDI-MS. New components identified in WS were cyclophilin-B and prolyl-4-hydroxylase. Also acidic and basic PRPs as well as the proline-rich glycoprotein (PRG) could now be mapped in WS. Acidic PRPs were found equally in parotid and SMSL secretions, whereas basic PRPs and PRG were found primarily in parotid secretion. Salivary mucin MUC7 was identified in SMSL secretion. Thus, the more abundant proteins of WS can be explained mainly by mixed contributions of parotid and SMSL secretions with only few components remaining that may be derived from local sources in the oral cavity.
The amylase gene (AMY), which codes for a starch-digesting enzyme in animals, underwent several gene copy number gains in humans (Perry et al., 2007), dogs (Axelsson et al., 2013), and mice (Schibler et al., 1982), possibly along with increased starch consumption during the evolution of these species. Here, we present comprehensive evidence for AMY copy number expansions that independently occurred in several mammalian species which consume diets rich in starch. We also provide correlative evidence that AMY gene duplications may be an essential first step for amylase to be expressed in saliva. Our findings underscore the overall importance of gene copy number amplification as a flexible and fast evolutionary mechanism that can independently occur in different branches of the phylogeny.
The microaerophilic bacterium Helicobacter pylori is well established for its role in development of different gastric diseases. Bacterial adhesins and corresponding binding sites on the epithelial surface allow H. pylori to colonize the gastric tissue. In this investigation, the adhesion of H. pylori to dot blot arrays of natural glycoproteins and neoglycoproteins was studied. Adhesion was detected by overlay with fluorescence-labeled bacteria on immobilized (neo)glycoproteins. The results confirmed the interaction between the adhesin BabA and the H-1-, Lewis b-, and related fucose-containing antigens. In addition, H. pylori bound to terminal alpha2-3-linked sialic acids as previously described. The use of a sabA mutant and sialidase treatment of glycoconjugate arrays showed that the adherence of H. pylori to laminin is mediated by the sialic acid-binding adhesin, SabA. The adhesion to salivary mucin MUC5B is mainly associated with the BabA adhesin and to a lesser extent with the SabA adhesin. This agrees with reports, that MUC5B carries both fucosylated blood group antigens and alpha2-3-linked sialic acids. The adhesion of H. pylori to fibronectin and lactoferrin persisted in the babA/sabA double mutant. Because binding to these molecules was abolished by denaturation rather than by deglycosylation, it was suggested to depend on the recognition of unknown receptor moieties by an additional unknown bacterial surface component. The results demonstrate that the bacterial overlay method on glycoconjugate arrays is a useful tool for exploration and the characterization of unknown adhesin specificities of H. pylori and other bacteria.
The gram-negative gastric pathogen Helicobacter pylori is equipped with an extraordinarily large set of outer membrane proteins (OMPs), whose role in the infection process is not well understood. The Hop (Helicobacter outer membrane porins) and Hor (Hop-related proteins) groups constitute a large paralogous family consisting of 33 members. The OMPs AlpA, AlpB, BabA, SabA, and HopZ have been identified as adhesins or adherenceassociated proteins. To better understand the relevance of these and other OMPs during infection, we analyzed the expression of eight different omp genes (alpA, alpB, babA, babB, babC, sabA, hopM, and oipA) in a set of 200 patient isolates, mostly from symptomatic children or young adults. Virtually all clinical isolates produced the AlpA and AlpB proteins, supporting their essential function. All other OMPs were produced at extremely variable rates, ranging from 35% to 73%, indicating a function in close adaptation to the individual host or gastric niche. In 11% of the isolates, BabA was produced, and SabA was produced in 5% of the isolates, but the strains failed to bind their cognate substrates. Interleukin-8 (IL-8) expression in gastric cells was strictly dependent on the presence of the cag pathogenicity island, whereas the presence of OipA clearly enhanced IL-8 production. The presence of the translocated effector protein CagA correlated well with BabA and OipA production. In conclusion, we found unexpectedly diverse omp expression profiles in individual H. pylori strains and hypothesize that this reflects the selective pressure for adhesion, which may differ across different hosts as well as within an individual over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.