For centuries isolation has been the main control strategy of unforeseen epidemic outbreaks. When implemented in full and without delay, isolation is very effective. However, flawless implementation is seldom feasible in practice. We present an epidemic model called SIQ with an isolation protocol, focusing on the consequences of delays and incomplete identification of infected hosts. The continuum limit of this model is a system of Delay Differential Equations, the analysis of which reveals clearly the dependence of epidemic evolution on model parameters including disease reproductive number, isolation probability, speed of identification of infected hosts and recovery rates. Our model offers estimates on minimum response capabilities needed to curb outbreaks, and predictions of endemic states when containment fails. Critical response capability is expressed explicitly in terms of parameters that are easy to obtain, to assist in the evaluation of funding priorities involving preparedness and epidemics management.
Localized states are a universal phenomenon observed in spatially distributed dissipative nonlinear systems. Known as dissipative solitons, auto-solitons, spot or pulse solutions, these states play an important role in data transmission using optical pulses, neural signal propagation, and other processes. While this phenomenon was thoroughly studied in spatially extended systems, temporally localized states are gaining attention only recently, driven primarily by applications from fiber or semiconductor lasers. Here we present a theory for temporal dissipative solitons (TDS) in systems with time-delayed feedback. In particular, we derive a system with an advanced argument, which determines the profile of the TDS. We also provide a complete classification of the spectrum of TDS into interface and pseudo-continuous spectrum. We illustrate our theory with two examples: a generic delayed phase oscillator, which is a reduced model for an injected laser with feedback, and the FitzHugh-Nagumo neuron with delayed feedback. Finally, we discuss possible destabilization mechanisms of TDS and show an example where the TDS delocalizes and its pseudo-continuous spectrum develops a modulational instability.
Infectious diseases are among the most prominent threats to mankind. When preventive health care cannot be provided, a viable means of disease control is the isolation of individuals, who may be infected. To study the impact of isolation, we propose a system of Delay Differential Equations and offer our model analysis based on the geometric theory of semi-flows. Calibrating the response to an outbreak in terms of the fraction of infectious individuals isolated and the speed with which this is done, we deduce the minimum response required to curb an incipient outbreak, and predict the ensuing endemic state should the infection continue to spread.
We consider the Yamada model for an excitable or self-pulsating laser with saturable absorber and study the effects of delayed optical self-feedback in the excitable case. More specifically, we are concerned with the generation of stable periodic pulse trains via repeated self-excitation after passage through the delayed feedback loop and their bifurcations. We show that onset and termination of such pulse trains correspond to the simultaneous bifurcation of countably many fold periodic orbits with infinite period in this delay differential equation. We employ numerical continuation and the concept of reappearance of periodic solutions to show that these bifurcations coincide with codimension-two points along families of connecting orbits and fold periodic orbits in a related advanced differential equation. These points include heteroclinic connections between steady states and homoclinic bifurcations with non-hyperbolic equilibria. Tracking these codimension-two points in parameter space reveals the critical parameter values for the existence of periodic pulse trains. We use the recently developed theory of temporal dissipative solitons to infer necessary conditions for the stability of such pulse trains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.