The development of inflammatory bowel disease (IBD) is associated with alterations in the gut microbiota. There is currently no universal treatment for this disease, thus emphasizing the importance of developing innovative therapeutic approaches. Gut microbiome-derived metabolite butyrate with its well-known anti-inflammatory effect in the gut is a promising candidate. Due to increased intestinal permeability during IBD, butyrate may also reach the liver and influence liver physiology, including hepatic drug metabolism. To get an insight into this reason, the aim of this study was set to clarify not only the protective effects of the sodium butyrate (SB) administration on colonic inflammation but also the effects of SB on hepatic drug metabolism in experimental colitis induced by dextran sodium sulfate (DSS) in mice. It has been shown here that the butyrate pre-treatment can alleviate gut inflammation and reduce the leakiness of colonic epithelium by restoration of the assembly of tight-junction protein Zonula occludens-1 (ZO-1) in mice with DSS-induced colitis. In this article, butyrate along with inflammation has also been shown to affect the expression and enzyme activity of selected cytochromes P450 (CYPs) in the liver of mice. In this respect, CYP3A enzymes may be very sensitive to gut microbiome-targeted interventions, as significant changes in CYP3A expression and activity in response to DSS-induced colitis and/or butyrate treatment have also been observed. With regard to medications used in IBD and microbiota-targeted therapeutic approaches, it is important to deepen our knowledge of the effect of gut inflammation, and therapeutic interventions were followed concerning the ability of the organism to metabolize drugs. This gut–liver axis, mediated through inflammation as well as microbiome-derived metabolites, may affect the response to IBD therapy.
Several studies have indicated the beneficial anti-inflammatory effect of butyrate in inflammatory bowel disease (IBD) therapy implying attempts to increase butyrate production in the gut through orally administered dietary supplementation. Through the gut–liver axis, however, butyrate may reach directly the liver and influence the drug-metabolizing ability of hepatic enzymes, and, indirectly, also the outcome of applied pharmacotherapy. The focus of our study was on the liver microsomal cytochrome P450 (CYP) 2A5, which is a mouse orthologue of human CYP2A6 responsible for metabolism of metronidazole, an antibiotic used to treat IBD. Our findings revealed that specific pathogen-free (SPF) and germ-free (GF) mice with dextran sulfate sodium (DSS)-induced colitis varied markedly in enzyme activity of CYP2A and responded differently to butyrate pre-treatment. A significant decrease (to 50%) of the CYP2A activity was observed in SPF mice with colitis; however, an administration of butyrate prior to DSS reversed this inhibition effect. This phenomenon was not observed in GF mice. The results highlight an important role of gut microbiota in the regulation of CYP2A under inflammatory conditions. Due to the role of CYP2A in metronidazole metabolism, this phenomenon may have an impact on the IBD therapy. Butyrate administration, hence, brings promising therapeutic potential for improving symptoms of gut inflammation; however, possible interactions with drug metabolism need to be further studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.