In order to fully exploit the potential of the rapidly progressing digitalisation of technical systems, it is necessary to provide reliable and significant process and condition related data. In this context, solutions are especially aspired to allow a simple integration into the surrounding system and to influence it as little as possible. The main challenges regarding the measurement of process and condition data in the operation and control of technical systems as well as in test environments are identified and presented at the beginning of this article. A promising approach to meet the resulting requirements is the integration of sensory functions into simple standardised machine elements. In order to facilitate the discussion and interdisciplinary development of machine elements with sensory functions, an extension of the existing classification of mechatronic machine elements is introduced and illustrated with examples. The introduced classification takes into account the classification according to Stücheli and Meboldt and is based on a comparison of conventional and mechatronic machine elements on a functional level with regard to the function structure. As a result, the three classes sensor carrying machine elements, sensor integrating machine elements and sensory utilizable machine elements are introduced and subsequently discussed in more detail on the basis of examples. Finally, an outlook is given on the main research areas with regard to the development of mechatronic machine elements. Key aspects include working principles and effects for application in mechatronic machine elements, system analysis with regard to load conditions, power supply of sensor and data processor in the environment of the machine element as well as data processing and signal transmission under typical environmental conditions of mechanical engineering.
Prototypes are often used as a tool in the product development process and their usage is advised in many guidelines, frameworks and product development methods. Those prototypes achieve different goals of which most relate to getting new insights and information about the product in development. For the development of those prototypes however, significantly less development methods are available compared to the number of methods for the development of products. Investigating the process of using a prototype leads to the idea that the main purpose of those prototypes is describable as learning about the product. This idea is elaborated further and followed by the introduction of the detailed process model for prototyping which is primarily based on the detailed process model for products. However, the purpose of the prototype differs from the purpose of the product which leads to some significant changes of the model. To give an example of a prototyping process, the development of a sensor- integrating elastic claw coupling is introduced and analysed. In addition, this paper discusses the question, how other product development models may be applied to the development of prototypes.
Prototyping in general is a widely used procedure within the product development process. Prototypes help to understand different and complex phenomena, support the communication between developers and customers and lower the risk of undesirable developments. There is however a lack of described methods for the development of the prototype itself to gain a maximum of knowledge. This paper therefore postulates a method for the development of early prototypes by identification of the critical properties of the final product. These properties lead to requirements for the prototype.
Zusammenfassung In Zeiten dynamischer Märkte und internationalen Wettbewerbs erlangt die Verkürzung von Produktentwicklungszyklen immer größere Bedeutung. Gleichzeitig werden auch die Möglichkeiten zur Herstellung von Prototypen zur Unterstützung der Produktentwicklung immer zahlreicher und diverser. Dieser Artikel beschäftigt sich mit der Ermittlung von Anforderungen an funktionelle Prototypen. Mithilfe dieser Prototypen sollen verlässliche Verifikationen der Einhaltung von Anforderungen an verschiedene Produktfunktionen ermöglicht werden. Als Beispiel werden dazu Produkte herangezogen, die im Spritzgussverfahren aus verschiedenen Kunststoffen hergestellt werden. Die konventionelle Verifikation dieser Produkte ist durch die Fertigung und den Einsatz von Prototypenwerkzeugen sehr zeitaufwändig und kostenintensiv. Der Einsatz additiver Fertigungsverfahren bietet die Möglichkeit, diese Faktoren zu senken. Hierbei muss jedoch sichergestellt sein, dass die Ergebnisse der Tests mit additiv gefertigten Prototypen auch auf das spritzgegossene Produkt übertragbar sind. Durch die Änderung des Fertigungsverfahrens und des verwendeten Materials treten Änderungen gewisser Eigenschaften des Prototyps im Vergleich zum finalen Produkt auf. Diese Abweichungen können sich wiederum negativ auf die Aussagefähigkeit der Ergebnisse der Verifikation mittels Prototypen auswirken, wenn die Eigenschaften essentiellen Einfluss auf die zu verifizierenden Funktionen haben. Daher wurde eine Methode – das House of Properties – entwickelt, mit der zum einen der Bedarf an Prototypen ermittelt werden kann und zum anderen die Eigenschaften des in der Entwicklung befindlichen Bauteils dahingehend untersucht werden können, welche Eigenschaften besonders kritisch auf bestimmte Funktionen wirken. Durch diese Analyse können Anforderungen an additiv gefertigte Prototypen identifiziert werden, die als Basis zur Auswahl des Fertigungsverfahrens und des Materials dienen. Die entwickelte Methode wird im Rahmen dieses Artikels anhand eines Industriebeispiels evaluiert und weiter erläutert.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.