Modern content sharing environments such as Flickr or YouTube contain a large amount of private resources such as photos showing weddings, family holidays, and private parties. These resources can be of a highly sensitive nature, disclosing many details of the users' private sphere. In order to support users in making privacy decisions in the context of image sharing and to provide them with a better overview on privacy related visual content available on the Web, we propose techniques to automatically detect private images, and to enable privacy-oriented image search. To this end, we learn privacy classifiers trained on a large set of manually assessed Flickr photos, combining textual metadata of images with a variety of visual features. We employ the resulting classification models for specifically searching for private photos, and for diversifying query results to provide users with a better coverage of private and public content. Large-scale classification experiments reveal insights into the predictive performance of different visual and textual features, and a user evaluation of query result rankings demonstrates the viability of our approach.
In this paper we study the connection between sentiment of images expressed in metadata and their visual content in the social photo sharing environment Flickr. To this end, we consider the bag-of-visual words representation as well as the color distribution of images, and make use of the SentiWordNet thesaurus to extract numerical values for their sentiment from accompanying textual metadata. We then perform a discriminative feature analysis based on information theoretic methods, and apply machine learning techniques to predict the sentiment of images. Our largescale empirical study on a set of over half a million Flickr images shows a considerable correlation between sentiment and visual features, and promising results towards estimating the polarity of sentiment in images.
The analysis of the leading social video sharing platform YouTube reveals a high amount of redundancy, in the form of videos with overlapping or duplicated content. In this paper, we show that this redundancy can provide useful information about connections between videos. We reveal these links using robust content-based video analysis techniques and exploit them for generating new tag assignments. To this end, we propose different tag propagation methods for automatically obtaining richer video annotations. Our techniques provide the user with additional information about videos, and lead to enhanced feature representations for applications such as automatic data organization and search. Experiments on video clustering and classification as well as a user evaluation demonstrate the viability of our approach.
The rapidly increasing popularity of Web 2.0 knowledge and content sharing systems and growing amount of shared data make discovering relevant content and finding contacts a difficult enterprize. Typically, folksonomies provide a rich set of structures and social relationships that can be mined for a variety of recommendation purposes. In this paper we propose a formal model to characterize users, items, and annotations in Web 2.0 environments. Our objective is to construct social recommender systems that predict the utility of items, users, or groups based on the multi-dimensional social environment of a given user. Based on this model we introduce recommendation mechanisms for content sharing frameworks. Our comprehensive evaluation shows the viability of our approach and emphasizes the key role of social meta knowledge for constructing effective recommendations in Web 2.0 applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.