GEOScan is a proposed space-based facility of globally networked instruments that will provide revolutionary, massively dense global geosciences observations. Major scientific research projects are typically conducted using two approaches: community facilities, and investigator lead focused missions. While science from space is almost exclusively conducted within the mission model, GEOScan is a new concept designed as a constellation facility from space utilizing a suite of space-based sensors that optimizes the scientific value across the greatest number of scientific disciplines in the earth and geosciences, while constraining cost and accommodation related parameters. Our grassroots design processes target questions that have not, and will not be answered until simultaneous global measurements are made. The relatively small size, mass, and power of the GEOScan instruments make them an ideal candidate for a hosted payload aboard a global constellation of communication satellites, such as the Iridium NEXT's 66satellite constellation. This paper will focus on the design and planning components of this new type of heterogeneous, multi-node facility concept, such as:costing, design for manufacture, science synergy, and operations of this non-traditional mission concept. We will demonstrate that this mission design concept has distinct advantages over traditional monolithic satellite missions for a number of scientific measurement priorities and data products due to the constellation configuration, scaled manufacturing and facility model.
ABSTRACT:Until very recently, the commercialization of Earth observation systems has largely occurred in two ways: either through the detuning of government satellites or the repurposing of NASA (or other science) data for commercial use. However, the convergence of cloud computing and low-cost satellites is enabling Earth observation companies to tailor observation data to specific markets. Now, underserved constituencies, such as agriculture and energy, can tap into Earth observation data that is provided at a cadence, resolution and cost that can have a real impact to their bottom line. To connect with these markets, OmniEarth fuses data from a variety of sources, synthesizes it into useful and valuable business information, and delivers it to customers via web or mobile interfaces. The "secret sauce" is no longer about having the highest resolution imagery, but rather it is about using that imagery -in conjunction with a number of other sources -to solve complex problems that require timely and contextual information about our dynamic and changing planet. OmniEarth improves subscribers' ability to visualize the world around them by enhancing their ability to see, analyze, and react to change in real time through a solutions-as-a-service platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.