Texture is extensively used in areas such as product design and architecture to convey specific aesthetic information. Using the results of a psychological experiment, we model the relationship between computational texture features and aesthetic properties of visual textures. Contrary to previous approaches, we build a layered model, which provides insights into hierarchical relationships involved in human aesthetic texture perception. This model uses a set of intermediate judgements to link computational texture features with aesthetic texture properties. We pursue two different approaches for modeling. (1) Supervised machine-learning methods are used to generate linear and nonlinear models from the experimental data automatically. The quality of these models is discussed, mainly focusing on interpretability and accuracy. (2) We apply a psychological-based approach that models the processing pathways in human perception of naturalness, introducing judgement dimensions (principal components) mediating the relationship between texture features and naturalness judgements. This multiple mediator model serves as a verification of the machine-learning approach. We conclude with a comparison of these two approaches, highlighting the similarities and discrepancies in terms of identified relationships between computational texture features and aesthetic properties of visual textures.
Abstract-A process for the design and manufacture of 3D tactile textures with predefined affective properties was developed. Twenty four tactile textures were manufactured. Texture measures from the domain of machine vision were used to characterize the digital representations of the tactile textures. To obtain affective ratings, the textures were touched, unseen, by 107 participants who scored them against natural, warm, elegant, rough, simple, and like, on a semantic differential scale. The texture measures were correlated with the participants' affective ratings using a novel feature subset evaluation method and a partial least squares genetic algorithm. Six measures were identified that are significantly correlated with human responses and are unlikely to have occurred by chance. Regression equations were used to select forty eight new tactile textures that had been synthesized using mixing algorithms and which were likely to score highly against the six adjectives when touched by participants. The new textures were manufactured and rated by participants. It was found that the regression equations gave excellent predictive ability. The principal contribution of the work is the demonstration of a process, using machine vision methods and rapid prototyping, which can be used to make new tactile textures with predefined affective properties.
Our world is filled with texture. For the human visual system, this is an important source of information for assessing environmental and material properties. Indeed—and presumably for this reason—the human visual system has regions dedicated to processing textures. Despite their abundance and apparent relevance, only recently the relationships between texture features and high-level judgments have captured the interest of mainstream science, despite long-standing indications for such relationships. In this study, we explore such relationships, as these might be used to predict perceived texture qualities. This is relevant, not only from a psychological/neuroscience perspective, but also for more applied fields such as design, architecture, and the visual arts. In two separate experiments, observers judged various qualities of visual textures such as beauty, roughness, naturalness, elegance, and complexity. Based on factor analysis, we find that in both experiments, ~75% of the variability in the judgments could be explained by a two-dimensional space, with axes that are closely aligned to the beauty and roughness judgments. That a two-dimensional judgment space suffices to capture most of the variability in the perceived texture qualities suggests that observers use a relatively limited set of internal scales on which to base various judgments, including aesthetic ones. Finally, for both of these judgments, we determined the relationship with a large number of texture features computed for each of the texture stimuli. We find that the presence of lower spatial frequencies, oblique orientations, higher intensity variation, higher saturation, and redness correlates with higher beauty ratings. Features that captured image intensity and uniformity correlated with roughness ratings. Therefore, a number of computational texture features are predictive of these judgments. This suggests that perceived texture qualities—including the aesthetic appreciation—are sufficiently universal to be predicted—with reasonable accuracy—based on the computed feature content of the textures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.