By inserting a A placMu bacteriophage into gene gimS encoding glucosamine 6-phosphate synthetase (GImS), the key enzyme of amino sugar biosynthesis, a nonreverting mutant of Escherichia coli K-12 that was strictly dependent on exogenous N-acetyl-D-glucosamine or D-glucosamine was generated. Analysis of suppressor mutations rendering the mutant independent of amino sugar supply revealed that the catabolic enzyme D-glucosamine-6-phosphate isomerase (deaminase), encoded by gene nagB of the nag operon, was able to fulfill anabolic functions in amino sugar biosynthesis. The suppressor mutants invariably expressed the isomerase constitutively as a result of mutations in nagR, the locus for the repressor of the nag regulon. Suppression was also possible by transformation of glmS mutants with high-copy-number plasmids expressing the gene nagB. Efficient suppression of the gimS lesion, however, required mutations in a second locus, termed glmX, which has been localized to 26.8 min on the standard E. coli K-12 map. Its possible function in nitrogen or cell wail metabolism is discussed.
Human tear lipocalin (Tlc) was utilized as a protein scaffold to engineer an Anticalin that specifically binds and functionally blocks vascular endothelial growth factor A (VEGF-A), a pivotal inducer of physiological angiogenesis that also plays a crucial role in several neovascular diseases. Starting from a naive combinatorial library where residues that form the natural ligand-binding site of Tlc were randomized, followed by affinity maturation, the final Anticalin PRS-050 was selected to bind all major splice forms of VEGF-A with picomolar affinity. Moreover, this Anticalin cross-reacts with the murine ortholog. PRS-050 efficiently antagonizes the interaction between VEGF-A and its cellular receptors, and it inhibits VEGF-induced mitogenic signaling as well as proliferation of primary human endothelial cells with subnanomolar IC50 values. Intravitreal administration of the Anticalin suppressed VEGF-induced blood-retinal barrier breakdown in a rabbit model. To allow lasting systemic neutralization of VEGF-A in vivo, the plasma half-life of the Anticalin was extended by site-directed PEGylation. The modified Anticalin efficiently blocked VEGF-mediated vascular permeability as well as growth of tumor xenografts in nude mice, concomitantly with reduction in microvessel density. In contrast to bevacizumab, the Anticalin did not trigger platelet aggregation and thrombosis in human FcγRIIa transgenic mice, thus suggesting an improved safety profile. Since neutralization of VEGF-A activity is well known to exert beneficial effects in cancer and other neovascular diseases, including wet age-related macular degeneration, this Anticalin offers a novel potent small protein antagonist for differentiated therapeutic intervention in oncology and ophthalmology.
Activation of the MET oncogenic pathway has been implicated in the development of aggressive cancers that are difficult to treat with current chemotherapies. This has led to an increased interest in developing novel therapies that target the MET pathway. However, most existing drug modalities are confounded by their inability to specifically target and/or antagonize this pathway. Anticalins, a novel class of monovalent small biologics, are hypothesized to be "fit for purpose" for developing highly specific and potent antagonists of cancer pathways. Here, we describe a monovalent full MET antagonist, PRS-110, displaying efficacy in both ligand-dependent and ligand-independent cancer models. PRS-110 specifically binds to MET with high affinity and blocks hepatocyte growth factor (HGF) interaction. Phosphorylation assays show that PRS-110 efficiently inhibits HGF-mediated signaling of MET receptor and has no agonistic activity. Confocal microscopy shows that PRS-110 results in the trafficking of MET to late endosomal/lysosomal compartments in the absence of HGF. In vivo administration of PRS-110 resulted in significant, dose-dependent tumor growth inhibition in ligand-dependent (U87-MG) and ligand-independent (Caki-1) xenograft models. Analysis of MET protein levels on xenograft biopsy samples show a significant reduction in total MET following therapy with PRS-110 supporting its ligand-independent mechanism of action. Taken together, these data indicate that the MET inhibitor PRS-110 has potentially broad anticancer activity that warrants evaluation in patients. Mol Cancer Ther; 12(11); 2459-71. Ó2013 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.