We present herein an innovative technique for decorating soft polymer surfaces with metallic nanostructures fabricated by diblock copolymer micelle nanolithography. Thus far, such nanolithography has been limited to plasma-resistant inorganic substrates such as glass. Our new development is based on the transfer of nanopatterns from glass to soft substrates. Special emphasis is given to hydrogel surfaces with respect to their properties for tailoring cell adhesion. Besides planar surfaces, periodic gold nanopatterns on curved surfaces have been fabricated, as demonstrated on the interior surface of a tubelike hydrogel, which potentially mimic situations of vessels in vivo.
A microtransfer technique for micropattern fabrication using a dithiol macromolecular linker is suggested by transferring a conventionally photolithography-prepared gold microarray on a hard inorganic substrate to a polymeric substrate. The linker was synthesized by end-capping a poly(ethylene glycol) (PEG) chain by the thiol groups. The efficiency of this technique is demonstrated by the transfer of gold microdots from glass to a cell-adhesion-resistant PEG hydrogel, which was formed by polymerizing PEG diacrylate macromers. The stability and biocompatibility of the resulting polymeric-inorganic hybrid material and cell-adhesion contrast of the patterned surface is confirmed by preliminary cell experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.