The proteasome is a vital cellular machine that maintains protein homeostasis, which is of particular importance in multiple myeloma and possibly other cancers. Targeting proteasome 20S peptidase activity with bortezomib and carfilzomib has been widely used to treat myeloma. However, not all patients respond, and those that do eventually suffer relapse. Therefore, there is an urgent and unmet need to develop novel drugs that target proteostasis through different mechanisms. We identified quinoline-8-thiol (8TQ) as a first-in-class inhibitor of the proteasome 19S subunit Rpn11. A derivative of 8TQ, capzimin, shows >5-fold selectivity for Rpn11 over the related JAMM proteases and >2 logs less activity towards metalloenzymes. Capzimin stabilized proteasome substrates, induced an unfolded protein response, and blocked proliferation of cancer cells, including those resistant to bortezomib. Proteomic analysis revealed that capzimin stabilized a subset of polyubiquitinated substrates. Identification of capzimin offers an alternative path to develop proteasome inhibitors for cancer therapy.
Lymphoid tyrosine phosphatase (LYP) and C-terminal Src kinase (CSK) are negative regulators of signaling mediated through the T cell antigen receptor (TCR) and are thought to act in a cooperative manner when forming a complex. Here, we studied the spatio-temporal dynamics of the LYP/CSK complex in T cells. We demonstrate that dissociation of this complex is necessary for recruitment of LYP to the plasma membrane, where it down-modulates TCR signaling. Development of a potent and selective chemical probe of LYP confirmed that LYP inhibits T cell activation when removed from CSK. Our findings may explain the reduced TCR-mediated signaling associated with a single nucleotide polymorphism, which confers increased risk for certain autoimmune diseases, including type 1 diabetes and rheumatoid arthritis, and results in expression of a LYP allele that is unable to bind CSK. Our compound also represents a starting point for the development of a LYP-based treatment of autoimmunity.
The accumulation of unfolded proteins in the endoplasmic reticulum (ER) is caused by many disease-relevant conditions, inducing conserved signaling events collectively known as the unfolded protein response. When ER stress is excessive or prolonged, cell death (usually occurring by apoptosis) is triggered. We undertook a chemical biology approach for investigating mechanisms of ER stress-induced cell death. Using a cell-based high throughput screening assay to identify compounds that rescued a neuronal cell line from thapsigargin-induced cell death, we identified benzodiazepinones that selectively inhibit cell death caused by inducers of ER stress (thapsigargin and tunicamycin) but not by inducers of extrinsic (tumor necrosis factor) or intrinsic (mitochondrial) cell death pathways. The compounds displayed activity in several cell lines and primary cultured neurons. Mechanism of action studies revealed that these compounds inhibit ER stress-induced activation of p38 MAPK and kinases responsible for c-Jun phosphorylation. Active benzodiazepinones suppressed cell death at the level of apoptotic signal kinase-1 (ASK1) within the IRE1 pathway but without directly inhibiting the kinase activity of ASK1 or >400 other kinases tested. Rather, active compounds enhanced phosphorylation of serine 967 of ASK1, promoting ASK1 binding to 14-3-3, an event associated with suppression of ASK1 function. Reducing ASK1 protein expression using small interfering RNA also protected cells from ER stress-induced apoptosis, confirming the importance of this protein kinase. Taken together, these findings demonstrate an essential role for ASK1 in cell death induced by ER stress. The compounds identified may prove useful for revealing endogenous mechanisms that regulate inhibitory phosphorylation of ASK1.
Herein we present the outcome of a high throughput screening (HTS) campaign-based strategy for the rapid identification and optimization of selective and general chemotypes for both kappa (κ) opioid receptor (KOR) activation and inhibition. In this program, we have developed potent antagonists (IC50 < 120 nM) or agonists of high binding affinity (Ki < 3 nM). In contrast to many important KOR ligands, the compounds presented here are highly modular, readily synthesized and, in most cases, achiral. The four new chemotypes hold promise for further development into chemical tools for studying the KOR or as potential therapeutic lead candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.