Roof curvature is used to increase ground vehicle camber and enhance rear-body boat-tailing to reduce aerodynamic drag. Little aerodynamic data is published for light goods vehicles (LGVs) which account for a significant proportion of annual UK licensed vehicle miles. This paper details scale wind tunnel measurements at Re = 1.6 x 10 6 of a generic LGV utilising interchangeable roof panels to investigate the effects of curved roof profile on aerodynamic drag at simulated crosswinds between-6°and 16°. Optimum magnitudes of roof profile depth and axial location are suggested and the limited dataset indicates that increasing roof curvature is effective in reducing drag over a large yaw range, compared to a flat roof profile. This is primarily due to increased base pressure, possibly from enhanced mixing of longitudinal vortices shed from the rear-body upper side edges and increased turbulent mixing in the nearwake due to the increased effective boat-tail angle.
The exhaust jet from a departing commercial aircraft will eventually rise buoyantly away from the ground; given the high thrust/power (i.e., momentum/buoyancy) ratio of modern aero-engines, however, this is a slow process, perhaps requiring ∼ 1 min or more. Supported by theoretical and wind tunnel modeling, we have experimented with an array of aerodynamic baffles on the surface behind a set of turbofan engines of 124 kN thrust. Lidar and point sampler measurements show that, as long as the intervention takes place within the zone where the Coanda effect holds the jet to the surface (i.e., within about 70 m in this case), then quite modest surface-mounted baffles can rapidly lift the jet away from the ground. This is of potential benefit in abating both surface concentrations and jet blast downstream. There is also some modest acoustic benefit. By distributing the aerodynamic lift and drag across an array of baffles, each need only be a fraction of the height of a single blast fence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.