Flow reactors are of increasing importance and have become crucial devices due to their wide application in chemical synthesis, electrochemical hydrogen evolution reaction (HER), or electrochemical waste water treatment. In many of these applications, catalyst materials such as transition-metal chalcogenides (TMCs) for the HER, provide the desired electrochemical reactivity for the HER. Generally, the flow electrolyzers' performance is evaluated as the overall output, but the decrease in activity of the electrolyzer is due to localized failure of the catalyst. Herein, we present a method for the spatially resolved (tens of micrometers) In Operando analysis of the catalytic activity under real operation conditions as well as the localized deposition of the catalyst in an operating model flow reactor. For these purposes, scanning electrochemical microscopy was applied for MoS x catalyst deposition and for localized tracking of the TMC activity with a resolution of 25 μm. This approach offers detailed information about the catalytic performance and should find broad application for the characterization and optimization of flow reactor catalysis under real operational conditions.
We report a new configuration for enhancing the performance of scanning electrochemical microscopy (SECM) via heating of the substrate electrode. A flattened Pt microwire was employed as the substrate electrode. The substrate was heated by an alternating current (AC), resulting in an increased mass transfer between the wire surface and the bulk solution. The electrochemical response of the Pt wire during heating was investigated by means of cyclic voltammetry (CV). The open circuit potential (OCP) of the wire was recorded over time, while varied heating currents were applied to investigate the time needed for establishing steady-state conditions. Diffusion layer studies were carried out by performing probe approach curves (PACs) for various measuring modes of SECM. Finally, imaging studies of a heated substrate electrode surface, applying feedback, substrate generation/tip collection (SG/TC), and the competition mode of SECM, were performed and compared with room temperature results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.