Four new multidentate N-donor ligands L 1 -L 4 have been prepared which contain a combination of pyridyl and thiazolyl donor units. The syntheses of these ligands are facile and high-yielding, being based on reaction of an α-bromoacetyl unit with a thioamide to form the thiazolyl ring. The extended linear sequence of ortho-linked N-donor heterocycles (four for L 1 , six for L 2 ; five for L 3 ; and six for L 4 ) is reminiscent of the well-known linear oligopyridines, although these new ligands are much easier to make and have significantly different geometric coordination properties because the presence of the five-membered thiazolyl rings results in natural breaks of the ligand backbone into distinct bidentate or terdentate domains. Thus, the tetradentate ligand L 1 partitions into two bidentate domains to give dinuclear triple helicates [M 2 (L 1 ) 3 ] 4+ with six-coordinate first-row transition metal dications (M = Co, Cu, Zn). The hexadentate ligand L 2 partitions into two terdentate domains to give dinuclear double helicates [M 2 (L 2 ) 2 ] 4+ with six-coordinate metal ions (M = Cu, Zn). In the double helicate [Cu 2 (L 3 ) 2 ] 4+ the pentadentate ligand L 3 only uses its two terminal bidentate binding sites, resulting in four-coordinate Cu() centres and a non-coordinated pyridyl residue in the centre of each of the two ligand strands. These pendant pyridyl residues are directed towards each other to give a potentially two-coordinate cavity between the metal ions in the centre of the helicate. Similarly, in the double helicate [Cu 2 (L 4 ) 2 ] 4+ the metal ions are only four-coordinate, with each ligand having its central bipyridyl unit un-coordinated. This results in a potentially four-coordinate cavity between the two metal ions in the centre of the helicate. These easy-to-prepare ligands offer a great deal of scope for the development of multinuclear helicates.
A series of first row transition metal complexes of the tripodal ligand 2,2',2"-nitrilotribenzoic acid H3L has been prepared and characterised by X-ray crystallography: Mononuclear [M(L)]- species [Cu(H2O)4]3[Cu(L)(H2O)]6.25H2O (2), [Co(H2O)6][Co(L)(H2O)].8H2O (4), [Zn(H2O)6][Zn(L)(H2O)].8H2O (5) and a neutral [M(L)] complex [Fe(III)2(L)(H2O)3].5H2O (8) are formed as well as dimeric [M(L)]2 2- species (HNEt3)2[Cu(L)]2.2CH3CN (1), (HNEt3)3[Ni(L)]2(ClO4).H2O (3), (HNEt3)2[Fe(II)(L)]2.2CH3CN (6) and (HNEt3)2[Fe(III)2(L)2(mu-O)](7). The complexes display a unique variation in the M-N distance (2.09 A for Cu(II) to 3.29 A for Fe(III)) to the bridgehead triphenylamine donor and are classified into compounds with "On","Off" and "Intermediate" N-coordination. The trigonal-bipyramidal coordination polyhedron changes towards tetrahedral in the intermediate and octahedral in the Off-state. The M-N distance of individual complexes is reversibly tuned by external chemical input such as changes of metal ion oxidation state (Fe(II)/Fe(III)) or variation of the axial coligand as a consequence of solvent or pH variation. Possible reasons for the exceptional tolerance of the M-N bond to distance variations are discussed under consideration of gas phase DFT calculations of [Zn(L)]-.
A new ferromagnetic nickel(II) hexameric structure based on the versatile N,O3-ligand 2,2',2"-nitrilotribenzoic acid has been prepared and characterised by X-ray crystallography and magnetic measurements; the compound represents a rare example of a nickel cluster with a dicubane-like core having only oxygen bridges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.