In this article, we review the principles of macroscopic quantum electrodynamics and discuss a variety of applications of this theory to medium-assisted atom-field coupling and dispersion forces. The theory generalises the standard mode expansion of the electromagnetic fields in free space to allow for the presence of absorbing bodies. We show that macroscopic quantum electrodynamics provides the link between isolated atomic systems and magnetoelectric bodies, and serves as an important tool for the understanding of surface-assisted atomic relaxation effects and the intimately connected position-dependent energy shifts which give rise to Casimir-Polder and van der Waals forces. : 42.50.Nn, 42.50.Ct, 34.35.+a,
PACS
Within the frame of macroscopic QED in linear, causal media, we study the radiation force of Casimir-Polder type acting on an atom which is positioned near dispersing and absorbing magnetodielectric bodies and initially prepared in an arbitrary electronic state. It is shown that minimal and multipolar coupling lead to essentially the same lowest-order perturbative result for the force acting on an atom in an energy eigenstate. To go beyond perturbation theory, the calculations are based on the exact center-of-mass equation of motion. For a nondriven atom in the weak-coupling regime, the force as a function of time is a superposition of force components that are related to the electronic density-matrix elements at a chosen time. Even the force component associated with the ground state is not derivable from a potential in the ususal way, because of the position dependence of the atomic polarizability. Further, when the atom is initially prepared in a coherent superposition of energy eigenstates, then temporally oscillating force components are observed, which are due to the interaction of the atom with both electric and magnetic fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.