Multidrug resistant microorganisms are forecast to become the single biggest challenge to medical care in the 21st century. Over the last decades, members of the genus Acinetobacter have emerged as bacterial opportunistic pathogens, in particular as challenging nosocomial pathogens because of the rapid evolution of antimicrobial resistances. Although we lack fundamental biological insight into virulence mechanisms, an increasing number of researchers are working to identify virulence factors and to study antibiotic resistance. Here, we review current knowledge regarding the regulation of virulence genes and antibiotic resistance in Acinetobacter baumannii. A survey of the two-component systems AdeRS, BaeSR, GacSA and PmrAB explains how each contributes to antibiotic resistance and virulence gene expression, while BfmRS regulates cell envelope structures important for pathogen persistence. A. baumannii uses the transcription factors Fur and Zur to sense iron or zinc depletion and upregulate genes for metal scavenging as a critical survival tool in an animal host. Quorum sensing, nucleoid-associated proteins, and non-classical transcription factors such as AtfA and small regulatory RNAs are discussed in the context of virulence and antibiotic resistance.
DNA in intracellular Salmonella enterica serovar Typhimurium relaxes during growth in the acidified (pH 4-5) macrophage vacuole and DNA relaxation correlates with the upregulation of Salmonella genes involved in adaptation to the macrophage environment. Bacterial ATP levels did not increase during adaptation to acid pH unless the bacterium was deficient in MgtC, a cytoplasmic-membrane-located inhibitor of proton-driven F F ATP synthase activity. Inhibiting ATP binding by DNA gyrase and topo IV with novobiocin enhanced the effect of low pH on DNA relaxation. Bacteria expressing novobiocin-resistant (Nov ) derivatives of gyrase or topo IV also exhibited DNA relaxation at acid pH, although further relaxation with novobiocin was not seen in the strain with Nov gyrase. Thus, inhibition of the negative supercoiling activity of gyrase was the primary cause of enhanced DNA relaxation in drug-treated bacteria. The Salmonella cytosol reaches pH 5-6 in response to an external pH of 4-5: the ATP-dependent DNA supercoiling activity of purified gyrase was progressively inhibited by lowering the pH in this range, as was the ATP-dependent DNA relaxation activity of topo IV. We propose that DNA relaxation in Salmonella within macrophage is due to acid-mediated impairment of the negative supercoiling activity of gyrase.
Fluoroquinolone antibiotics are prescribed for the treatment of infections, but resistance to this family of antibiotics is growing. Here we report that loss of the global regulatory protein cyclic AMP (cAMP) receptor protein (CRP) or its allosteric effector, cAMP, reduces susceptibility to fluoroquinolones. A Δ mutation was synergistic with the primary fluoroquinolone resistance allele , thus able to contribute to clinically relevant resistance. Decreased susceptibility to fluoroquinolones could be partly explained by decreased expression of the outer membrane porin genes and with a concomitant increase in the expression of the ciprofloxacin resistance efflux pump gene in Δ cells. Expression of , which encode the DNA supercoiling enzyme GyrAB, which is blocked by fluoroquinolones, and expression of, which encodes the dominant supercoiling-relaxing enzyme topoisomerase I, were unchanged in Δ cells. Yet Δ cells maintained a more relaxed state of DNA supercoiling, correlating with an observed increase in topoisomerase IV () expression. Surprisingly, the Δ mutation had the unanticipated effect of enhancing fitness in the presence of fluoroquinolone antibiotics, which can be explained by the observation that exposure of Δ cells to ciprofloxacin had the counterintuitive effect of restoring wild-type levels of DNA supercoiling. Consistent with this, Δ cells did not become elongated or induce the SOS response when challenged with ciprofloxacin. These findings implicate the combined action of multiple drug resistance mechanisms in Δ cells: reduced permeability and elevated efflux of fluoroquinolones coupled with a relaxed DNA supercoiling state that buffers cells against GyrAB inhibition by fluoroquinolones.
Small noncoding RNAs (sRNAs) with putative regulatory functions in gene expression have been identified in the enteropathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). Two sRNAs are encoded by the genomic island GEI4417/4436 responsible for myo-inositol (MI) degradation, suggesting a role in the regulation of this metabolic pathway. We show that a lack of the sRNA STnc2160, termed RssR, results in a severe growth defect in minimal medium (MM) with MI. In contrast, the second sRNA STnc1740 was induced in the presence of glucose, and its overexpression slightly attenuated growth in the presence of MI. Constitutive expression of RssR led to an increased stability of the reiD mRNA, which encodes an activator of iol genes involved in MI utilization, via interaction with its 5′-UTR. SsrB, a response regulator contributing to the virulence properties of salmonellae, activated rssR transcription by binding the sRNA promoter. In addition, the absence of the RNA chaperone Hfq resulted in strongly decreased levels of RssR, attenuated S. Typhimurium growth with MI, and reduced expression of several iol genes required for MI degradation. Considered together, the extrinsic RssR allows fine regulation of cellular ReiD levels and thus of MI degradation by acting on the reiD mRNA stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.