[1] Six levels of meteorological sensors have been deployed along a 45 m tower at the French-Italian Concordia station, Dome C, Antarctic. We present measurements of vertical profiles, the diurnal cycle, and interdiurnal variability of temperature, humidity, and wind speed and direction for 3 weeks during the southern summer of 2008. These measurements are compared to 6-hourly European Center for Medium-Range Forecasts (ECMWF) analyses and daily radiosoundings. The ECMWF analyses show a 3-4°C warm bias relative to the tower observations. They reproduce the diurnal cycle of temperature with slightly weaker amplitude and weaker vertical gradients. The amplitude of the diurnal cycle of relative humidity is overestimated by ECMWF because the amplitude of the absolute humidity diurnal cycle is too small. The nighttime surface-based wind shear and Ekman spiral is also not reproduced in the ECMWF analyses. Radiosonde temperatures are biased low relative to the tower observations in the lowest 30 m but approach agreement at the top of the tower. Prior to bias correction for age-related contamination, radiosonde relative humidities are biased low relative to the tower observations in the lowest 10 m but agree with tower observations above this height. After correction for the age-related bias, the radiosonde relative humidity agrees with tower observations below 10 m but is biased high above this height. Tower temperature observations may also be biased by solar heating, despite radiation shielding and natural ventilation.
[1] The Antarctic research stations of Dome C and Halley lie at similar latitudes ($75°S) and are thus subject to similar diurnal variation of solar radiation at the top of the atmosphere. However, the response of the atmospheric boundary layer to this diurnally varying forcing differs greatly at the two stations. At Dome C during summer there is a strong diurnal cycle in near-surface temperature and wind speed, and a shallow ($350 m) convective boundary layer is observed to grow in response to diurnal heating. At Halley, diurnal variations in temperature and wind speed are smaller than those at Dome C, and there is no clear diurnal variability in boundary layer depth. Analysis of the summertime surface energy budget for both stations indicates that the main reason for the different diurnal variability at the two stations is the greater partitioning of available energy into latent heat flux at the warmer Halley station. We argue that the diurnally varying convective boundary layer observed at Dome C will not be typical of the whole of the East Antarctic plateau.
Measurements of the mean and turbulent structure of the planetary boundary layer using a sodar and a sonic anemometer, and radiative measurements using a radiometer, were carried out in the summer of 1999-2000 at the Antarctic plateau station of Dome C during a two-month period. At Dome C strong ground-based inversions dominate for most of the year. However, in spite of the low surface temperatures (between )50 and )20°C), and the surface always covered by snow and ice, a regular daytime boundary-layer evolution, similar to that observed at mid-latitudes, was observed during summertime. The mixed-layer height generally reaches 200-300 m at 1300-1400 LST in high summer (late December, early January); late in the summer (end of January to February), as the solar elevation decreases, it reduces to 100-200 m. A comparison between the mixed-layer height estimated from sodar measurements and that calculated using a mixed-layer growth model shows a rather satisfactory agreement if we assign a value of 0.01-0.02 m s )1 to the subsidence velocity at the top of the mixed layer, and a value of 0.003-0.004 K m )1 to the potential temperature gradient above the mixed layer.
Abstract. Regional climate model MAR (Modèle Atmosphérique Régional) was run for the region of Dome C located on the East Antarctic plateau, during Antarctic summer 2011-2012, in order to refine our understanding of meteorological conditions during the OPALE tropospheric chemistry campaign. A very high vertical resolution is set up in the lower troposphere, with a grid spacing of roughly 2 m. Model output is compared with temperatures and winds observed near the surface and from a 45 m high tower as well as sodar and radiation data. MAR is generally in very good agreement with the observations, but sometimes underestimates cloud formation, leading to an underestimation of the simulated downward long-wave radiation. Absorbed short-wave radiation may also be slightly overestimated due to an underestimation of the snow albedo, and this influences the surface energy budget and atmospheric turbulence. Nevertheless, the model provides sufficiently reliable information about surface turbulent fluxes, vertical profiles of vertical diffusion coefficients and boundary layer height when discussing the representativeness of chemical measurements made nearby the ground surface during field campaigns conducted at Concordia station located at Dome C (3233 m above sea level).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.