The A adenosine receptor (A AR) subtype is a novel, promising therapeutic target for inflammatory diseases, such as rheumatoid arthritis (RA) and psoriasis, as well as liver cancer. A AR is coupled to inhibition of adenylyl cyclase and regulation of mitogen-activated protein kinase (MAPK) pathways, leading to modulation of transcription. Furthermore, A AR affects functions of almost all immune cells and the proliferation of cancer cells. Numerous A AR agonists, partial agonists, antagonists, and allosteric modulators have been reported, and their structure-activity relationships (SARs) have been studied culminating in the development of potent and selective molecules with drug-like characteristics. The efficacy of nucleoside agonists may be suppressed to produce antagonists, by structural modification of the ribose moiety. Diverse classes of heterocycles have been discovered as selective A AR blockers, although with large species differences. Thus, as a result of intense basic research efforts, the outlook for development of A AR modulators for human therapeutics is encouraging. Two prototypical selective agonists, N6-(3-Iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA; CF101) and 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA; CF102), have progressed to advanced clinical trials. They were found safe and well tolerated in all preclinical and human clinical studies and showed promising results, particularly in psoriasis and RA, where the A AR is both a promising therapeutic target and a biologically predictive marker, suggesting a personalized medicine approach. Targeting the A AR may pave the way for safe and efficacious treatments for patient populations affected by inflammatory diseases, cancer, and other conditions.
Adenosine may affect several pathophysiological processes, including cellular proliferation, through interaction with A(1), A(2A), A(2B), and A(3) receptors. In this study we characterized adenosine receptors in human colon cancer tissues and in colon cancer cell lines Caco2, DLD1, HT29. mRNA of all adenosine subtypes was detected in cancer tissues and cell lines. At a protein levels low amount of A(1), A(2A), and A(2B) receptors were detected, whilst the A(3) was the most abundant subtype in both cancer tissues and cells, with a pharmacological profile typical of the A(3) subtype. All the receptors were coupled to stimulation/inhibition of adenylyl-cyclase in cancer cells, with the exception of A(1) subtype. Adenosine increased cell proliferation with an EC(50) of 3-12 microM in cancer cells. This effect was not essentially reduced by adenosine receptor antagonists. However dypiridamol, an adenosine transport inhibitor, increased the stimulatory effect induced by adenosine, suggesting an action at the cell surface. Addition of adenosine deaminase makes the A(3) agonist 2-chloro-N6-(3-iodobenzyl)-N-methyl-5'-carbamoyladenosine (Cl-IB-MECA) able to stimulate cell proliferation with an EC(50) of 0.5-0.9 nM in cancer cells, suggesting a tonic proliferative effect induced by endogenous adenosine. This effect was antagonized by 5-N-(4-methoxyphenyl-carbamoyl)amino-8-propyl-2(2furyl)-pyrazolo-[4,3e]-1,2,4-triazolo [1,5-c] pyrimidine (MRE 3008F20) 10 nM. Cl-IB-MECA-stimulated cell proliferation involved extracellular-signal-regulated-kinases (ERK1/2) pathway, as demonstrated by reduction of proliferation with 1,4-diamino-2,3-dicyano-1,4-bis-[2-amino-phenylthio]-butadiene (U0126) and by ERK1/2 phosphorylation. In conclusion this study indicates for the first time that in colon cancer cell lines endogenous adenosine, through the interaction with A(3) receptors, mediates a tonic proliferative effect.
Transient receptor potential vanilloid 1 (TRPV1) is an ion channel expressed on sensory neurons triggering an influx of cations. TRPV1 receptors function as homotetramers responsive to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Its phosphorylation increases sensitivity to both chemical and thermal stimuli, while desensitization involves a calcium-dependent mechanism resulting in receptor dephosphorylation. TRPV1 functions as a sensor of noxious stimuli and may represent a target to avoid pain and injury. TRPV1 activation has been associated to chronic inflammatory pain and peripheral neuropathy. Its expression is also detected in nonneuronal areas such as bladder, lungs, and cochlea where TRPV1 activation is responsible for pathology development of cystitis, asthma, and hearing loss. This review offers a comprehensive overview about TRPV1 receptor in the pathophysiology of chronic pain, epilepsy, cough, bladder disorders, diabetes, obesity, and hearing loss, highlighting how drug development targeting this channel could have a clinical therapeutic potential. Furthermore, it summarizes the advances of medicinal chemistry research leading to the identification of highly selective TRPV1 antagonists and their analysis of structure-activity relationships (SARs) focusing on new strategies to target this channel.
A Sonogashira coupling strategy was employed to synthesize a new series of allosteric modulators for the A1 adenosine receptor based on the 2-amino-3-(p-chlorobenzoyl)-4-substituted thiophene skeleton, with a two-carbon (rigid or flexible) linker between the 5-position of the thiophene ring and a (hetero)aryl or alkyl moiety. Among the compounds characterized by the presence of a common phenylacetylene moiety at the 5-position of the thiophene ring, the neopentyl substitution at the 4-position supported a strong activity. In the series of 4-neopentyl derivatives, the presence of an acetylene spacer at the 5-position of the thiophene is optimal for activity, whereas reduction of the acetylene to an ethyl moiety decreased activity, both in functional and binding assays. Derivatives 4e, 4g-h, 4j, 4l, and 4m were the most promising compounds in binding (saturation and competition) and functional cAMP studies, being able to potentiate agonist [(3)H]CCPA binding to the A1 receptor, with 4e as the best compound of the series. The latter compound also retarded the dissociation of another radiolabeled agonist, [(3)H]NECA, from the receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.