Unexplained intrauterine growth restriction of the fetus (IUGR) results from impaired placental development, frequently associated with maternal malperfusion. Some cases are complicated further by preeclampsia (PE؉IUGR). Here, we provide the first evidence that placental protein synthesis inhibition and endoplasmic reticulum (ER) stress play key roles in IUGR pathophysiology. Increased phosphorylation of eukaryotic initiation factor 2␣ suggests suppression of translation initiation in IUGR placentas, with a further increase in PE؉IUGR cases. Consequently, AKT levels were reduced at the protein, but not mRNA, level. Additionally, levels of other proteins in the AKT-mammalian target of rapamycin pathway were decreased, and there was associated dephosphorylation of 4E-binding protein 1 and activation of glycogen synthase kinase 3. Cyclin D1 and the eukaryotic initiation factor 2B epsilon subunit were also down-regulated, providing additional evidence for this placental phenotype. The central role of AKT signaling in placental growth regulation was confirmed in Akt1 null mice, which display IUGR. In addition, we demonstrated ultrastructural and molecular evidence of ER stress in human IUGR and PE؉IUGR placentas, providing a potential mechanism for eukaryotic initiation factor 2␣ phosphorylation. In confirmation, induction of low-grade ER stress in trophoblast-like cell lines reduced cellular proliferation. PE؉IUGR placentas showed elevated ER stress with the additional expression of the pro-apoptotic protein C/EBP-homologous protein/growth arrest and DNA damage 153. These findings may account for the increased microparticulate placental debris in the maternal circulation of these cases, leading to endothelial cell activation and impairing placental development.
Although human studies are scarce, and conclusive evidence is provided solely for periconceptional folate and prevention of neural tube defects (NTDs), the overall data indicate that micronutrients may affects fertility, embryogenesis and placentation, and the prophylactic use of some micronutrients may be useful in preventing several adverse pregnancy outcomes. Efforts to increase awareness of a healthy diet should be strengthened not only throughout pregnancy but also before. However, further researches in humans are necessary to optimise periconceptional micronutrient requirements.
Background/Aims: Head and neck squamous cell carcinoma (HNSCC) ranks sixth worldwide for tumor-related mortality. A subpopulation of tumor cells, termed cancer stem cells (CSCs), has the ability to support cancer growth. Therefore, profiling CSC-enriched populations could be a reliable tool to study cancer biology. Methods: We performed phenotypic characterization of 7 HNSCC cell lines and evaluated the presence of CSCs. CSCs from Hep-2 cell line and HNSCC primary cultures were enriched through sphere formation and sphere-forming cells have been characterized both in vitro and in vivo. In addition, we investigated the expression levels of Nicotinamide N-methyltransferase (NNMT), an enzyme overexpressed in several malignancies. Results: CSC markers were markedly expressed in Hep-2 cell line, which was found to be highly tumorigenic. CSC-enriched populations displayed increased expression of CSC markers and a strong capability to form tumors in vivo. We also found an overexpression of CSC markers in tumor formed by CSC-enriched populations. Interestingly, NNMT levels were significantly higher in CSC-enriched populations compared with parental cells. Conclusion: Our study provides an useful procedure for CSC identification and enrichment in HNSCC. Moreover, results obtained seem to suggest that CSCs may represent a promising target for an anticancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.