The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (http://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point‐in‐time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.14748. G protein‐coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid‐2019, and supersedes data presented in the 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC‐IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point‐in‐time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein‐coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid‐2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC‐IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. A c c e p t e d M a n u s c r i p t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 2 Running title: Beneficial and detrimental outcomes of astrogliosis after central nervous system injury. Abbreviations:Ado, adenosine; AMPA, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate; AP1, activator protein1; AQP, acquaporin; BBB, blood-brain barrier; BDNF, brain-derived growth factor; bFGF, basic fibroblast growth factor; bHLH, basic helix loop helix; BMP, bone morphogenetic protein; CNS, central nervous system; CNTF, ciliary neurotrophic factor;COX-2, cyclooxigenase-2; CREB, cAMP response element binding; CSPGs, chondroitinsulphate proteoglycans; ERK, extracellular signal-regulated kinase; EGF, epidermal growth factor; Eph4A, ephrin 4A; Epo, erythropoietin; ET1, Endothelin 1; ET-R, endothelin receptor; GABA, gamma-aminobutyric acid; GDNF, glial cell-line derived neurotropic factor; GF, growth factor; GFAP, glial fibrillary acidic protein; GLAST, glutamate aspartate transporter; GLT1, glutamate transporter 1; GS, glutamine synthase; IFN , interferon-beta; IFNγ, interferon gamma; IGF1, insulin growth factor1; IL1β, interleukin 1 beta; IL2, interleukin 2; IL6, interleukin 6; IL10, interleukin 10; JAK, Janus protein tyrosine kinases; Lcn2, Lipocalin 2; MAPK, mitogen-activated protein kinase; MMP, matrix metalloprotease; mTOR, mammalian target of rapamycin; NFAT, nuclear factor of activated T cell; NFkB, nuclear factor kappa B; NGF, nerve growth factor; NT3, neurotrophin 3; p38MAPK, p38 mitogen-activated protein kinase; PTEN, phosphatase and tensin homolog; SOCS, suppressor of cytokine signaling; SOD, superoxide dismutase; STAT, signal transducers and activators of transcription; TGFα, transforming growth factor alpha;TGFβ, transforming growth factor beta; TNFα, tumor necrosis factor alpha; VCAM1, vascular cell adhesion molecule-1; VEGF, vascular endothelial growth factor. Page 4 of 63A c c e p t e d M a n u s c r i p t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 A c c e p t e d M a n u s c r i p t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 4...
Recently, cannabinoids (CBs) have been shown to possess antitumor properties. Because the psychoactivity of cannabinoid compounds limits their medicinal usage, we undertook the present study to evaluate the in vitro antiproliferative ability of cannabidiol (CBD), a nonpsychoactive cannabinoid compound, on U87 and U373 human glioma cell lines. The addition of CBD to the culture medium led to a dramatic drop of mitochondrial oxidative metabolism [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide test] and viability in glioma cells, in a concentration-dependent manner that was already evident 24 h after CBD exposure, with an apparent IC 50 of 25 M. The antiproliferative effect of CBD was partially prevented by the CB2 receptor antagonist N- [(1S)-endo-1,3,3-trimethylbicyclo[2,2,1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528; SR2) and ␣-tocopherol. By contrast, the CB1 cannabinoid receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR141716; SR1), capsazepine (vanilloid receptor antagonist), the inhibitors of ceramide generation, or pertussis toxin did not counteract CBD effects. We also show, for the first time, that the antiproliferative effect of CBD was correlated to induction of apoptosis, as determined by cytofluorimetric analysis and single-strand DNA staining, which was not reverted by cannabinoid antagonists. Finally, CBD, administered s.c. to nude mice at the dose of 0.5 mg/mouse, significantly inhibited the growth of subcutaneously implanted U87 human glioma cells. In conclusion, the nonpsychoactive CBD was able to produce a significant antitumor activity both in vitro and in vivo, thus suggesting a possible application of CBD as an antineoplastic agent.
Adenosine receptors modulate neuronal and synaptic function in a range of ways that may make them relevant to the occurrence, development and treatment of brain ischemic damage and degenerative disorders. A(1) adenosine receptors tend to suppress neural activity by a predominantly presynaptic action, while A(2A) adenosine receptors are more likely to promote transmitter release and postsynaptic depolarization. A variety of interactions have also been described in which adenosine A(1) or A(2) adenosine receptors can modify cellular responses to conventional neurotransmitters or receptor agonists such as glutamate, NMDA, nitric oxide and P2 purine receptors. Part of the role of adenosine receptors seems to be in the regulation of inflammatory processes that often occur in the aftermath of a major insult or disease process. All of the adenosine receptors can modulate the release of cytokines such as interleukins and tumor necrosis factor-alpha from immune-competent leukocytes and glia. When examined directly as modifiers of brain damage, A(1) adenosine receptor (AR) agonists, A(2A)AR agonists and antagonists, as well as A(3)AR antagonists, can protect against a range of insults, both in vitro and in vivo. Intriguingly, acute and chronic treatments with these ligands can often produce diametrically opposite effects on damage outcome, probably resulting from adaptational changes in receptor number or properties. In some cases molecular approaches have identified the involvement of ERK and GSK-3beta pathways in the protection from damage. Much evidence argues for a role of adenosine receptors in neurological disease. Receptor densities are altered in patients with Alzheimer's disease, while many studies have demonstrated effects of adenosine and its antagonists on synaptic plasticity in vitro, or on learning adequacy in vivo. The combined effects of adenosine on neuronal viability and inflammatory processes have also led to considerations of their roles in Lesch-Nyhan syndrome, Creutzfeldt-Jakob disease, Huntington's disease and multiple sclerosis, as well as the brain damage associated with stroke. In addition to the potential pathological relevance of adenosine receptors, there are earnest attempts in progress to generate ligands that will target adenosine receptors as therapeutic agents to treat some of these disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.