A resolutive therapy for Duchene muscular dystrophy, a severe degenerative disease of the skeletal muscle, is still lacking. Because autophagy has been shown to be crucial in clearing dysfunctional organelles and in preventing tissue damage, we investigated its pathogenic role and its suitability as a target for new therapeutic interventions in Duchenne muscular dystrophy (DMD). Here we demonstrate that autophagy is severely impaired in muscles from patients affected by DMD and mdx mice, a model of the disease, with accumulation of damaged organelles. The defect in autophagy was accompanied by persistent activation via phosphorylation of Akt, mammalian target of rapamycin (mTOR) and of the autophagy-inhibiting pathways dependent on them, including the translation-initiation factor 4E-binding protein 1 and the ribosomal protein S6, and downregulation of the autophagy-inducing genes LC3, Atg12, Gabarapl1 and Bnip3. The defective autophagy was rescued in mdx mice by long-term exposure to a low-protein diet. The treatment led to normalisation of Akt and mTOR signalling; it also reduced significantly muscle inflammation, fibrosis and myofibre damage, leading to recovery of muscle function. This study highlights novel pathogenic aspects of DMD and suggests autophagy as a new effective therapeutic target. The treatment we propose can be safely applied and immediately tested for efficacy in humans.
Background: Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder associated with the partial deletion of integral numbers of 3.3 kb D4Z4 DNA repeats within the subtelomere of chromosome 4q. A number of candidate FSHD genes, adenine nucleotide translocator 1 gene (ANT1), FSHD-related gene 1 (FRG1), FRG2 and DUX4c, upstream of the D4Z4 array (FSHD locus), and double homeobox chromosome 4 (DUX4) within the repeat itself, are upregulated in some patients, thus suggesting an underlying perturbation of the chromatin structure. Furthermore, a mouse model overexpressing FRG1 has been generated, displaying skeletal muscle defects.
BackgroundDetermine global gene dysregulation affecting 4q-linked (FSHD-1) and non 4q-linked (FSHD-2) cells during early stages of myogenic differentiation. This approach has been never applied to FSHD pathogenesis.Methodology/Principal FindingsBy in vitro differentiation of FSHD-1 and FSHD-2 myoblasts and gene chip analysis we derived that gene expression profile is altered only in FSHD-1 myoblasts and FSHD-2 myotubes. The changes seen in FSHD-1 regarded a general defect in cell cycle progression, probably due to the upregulation of myogenic markers PAX3 and MYOD1, and a deficit of factors (SUV39H1 and HMGB2) involved in D4Z4 chromatin conformation. On the other hand, FSHD-2 mytubes were characterized by a general defect in RNA metabolism, protein synthesis and degradation and, to a lesser extent, in cell cycle. Common dysregulations regarded genes involved in response to oxidative stress and in sterol biosynthetic process. Interestingly, our results also suggest that miRNAs might be implied in both FSHD-1 and FSHD-2 gene dysregulation. Finally, in both cell differentiation systems, we did not observe a gradient of altered gene expression throughout the 4q35 chromosome.Conclusions/SignificanceFSHD-1 and FSHD-2 cells showed, in different steps of myogenic differentiation, a global deregulation of gene expression rather than an alteration of expression of 4q35 specific genes. In general, FSHD-1 and FSHD-2 global gene deregulation interested common and distinctive biological processes. In this regard, defects of cell cycle progression (FSHD-1 and to a lesser extent FSHD-2), protein synthesis and degradation (FSHD-2), response to oxidative stress (FSHD-1 and FSHD-2), and cholesterol homeostasis (FSHD-1 and FSHD-2) may in general impair a correct myogenesis. Taken together our results recapitulate previously reported defects of FSHD-1, and add new insights into the gene deregulation characterizing both FSHD-1 and FSHD-2, in which miRNAs may play a role.
AIMSTriplet chemotherapy with fluoropyrimidines, oxaliplatin and irinotecan is a standard therapy for metastatic colorectal cancer (CRC). Single nucleotide polymorphisms (SNPs) in DPYD and UGT1A1 influence fluoropyrimdines and irinotecan adverse events (AEs). Low frequency DPYD variants (c.1905 + 1G > A, c.1679 T > G, c.2846A > T) are validated but more frequent ones (c.496A > G, c.1129-5923C > G and c.1896 T > C) are not. rs895819 T > C polymorphism in hsa-mir-27a is associated with reduced DPD activity. In this study, we evaluated the clinical usefulness of a pharmacogenetic panel for patients receiving triplet combinations. METHODSGermline DNA was available from 64 CRC patients enrolled between 2008 and 2013 in two phase II trials of capecitabine, oxaliplatin and irinotecan plus bevacizumab or cetuximab. SNPs were determined by Real-Time PCR. We evaluated the functional variants in DPYD (rare: c.1905 + 1G > A, c.1679 T > G, c.2846A > T; most common: c.496A > G, c.1129-5923C > G, c.1896 T > C), hsa-mir-27a (rs895819) and UGT1A1 (*28) genes to assess their association with grade 3-4 AEs. RESULTSNone of the patients carried rare DPYD variants. We found DPYD c.496A > G, c.1129-5923C > G, c.1896 T > C in heterozygosity in 19%, 5% and 8%, WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT• Pharmacogenetic testing of DPYD and UGT1A1 is recommended in clinical practice prior to administration of fluoropyrimidines and irinotecan, respectively. respectively, homozygous rs895819 in hsa-mir-27a in 9% and homozygous UGT1A1*28 in 8%. Grade 3-4 AEs were observed in 36% patients and were associated with DPYD c.496A > G (odds ratio (OR) 4.93, 95% CI 1.29, 18.87; P = 0.021) and homozygous rs895819 in hsa-mir-27a (OR 11.11, 95% CI 1.21, 102.09; P = 0.020). Carriers of DPYD c.1896 T > C and homozygous UGT1A1*28 showed an OR of 8.42 (95% CI 0.88, 80.56; P = 0.052). Multivariate analysis confirmed an independent value for DPYD c
We investigated in ninety Caucasian pediatric patients the impact of the main polymorphisms occurring in CYP3A, CYP2D6, ABCB1 and ABCG2 genes on second-generation antipsychotics plasma concentrations, and their association with the occurrence of adverse drug reactions. Patients with the CA/AA ABCG2 genotype had a statistically significant lower risperidone plasma concentration/dose ratio (Ct/ds) (P-value: 0.007) and an higher estimated marginal probability of developing metabolism and nutrition disorders as compared to the ABCG2 c.421 non-CA/AA genotypes (P-value: 0.008). Multivariate analysis revealed that the ABCG2 c.421 CA/AA genotype was found associated to a higher hazard (P-value: 0.004) of developing adverse drug reactions classified as metabolism and nutrition disorders. The ABCB1 2677TT/3435TT genotype had a statistically significant lower aripiprazole Ct/ds if compared with patients with others ABCB1 genotypes (P-value: 0.026). Information obtained on ABCB1 and ABCG2 gene variants may result useful to tailor treatments with these drugs in Caucasian pediatric patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.