To assess the activity of septohippocampal cholinergic neurons during the learning of a radial-arm maze task we measured changes in extracellular acetylcholine levels in the hippocampus by means of the vertical microdialysis technique. During the 12 days spent learning the spatial task the extracellular concentration of acetylcholine in the hippocampus was monitored while rats performed the test. One week before radial-arm maze training a guide cannula was implanted unilaterally in the hippocampus. On each day of testing a removable microdialysis probe was inserted through the guide cannula and the dialysate was collected during the test performance. The concentration of acetylcholine in the dialysate was detected by means of a high-performance liquid chromatograph coupled to an electrochemical detector. We found that hippocampal acetylcholine release progressively increased from 139% to 245% during the 12 days of radial-maze learning and the magnitude of change in acetylcholine output was positively correlated with spatial memory performance, thus suggesting that changes in the functioning of these neurons are involved in learning.
Triple-negative breast cancer (TNBC) is a heterogeneous group of tumors characterized by aggressive behavior, high risk of distant recurrence, and poor survival. Chemotherapy is still the main therapeutic approach for this subgroup of patients, therefore, progress in the treatment of TNBC remains an important challenge. Data derived from molecular technologies have identified TNBCs with different gene expression and mutation profiles that may help developing targeted therapies. So far, however, only a few of these have shown to improve the prognosis and outcomes of TNBC patients. Robust predictive biomarkers to accelerate clinical progress are needed. Herein, we review prognostic and predictive biomarkers in TNBC, discuss the current evidence supporting their use, and look at the future of this research field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.