F(0)F(1)ATPsynthase is now known to be expressed as a plasma membrane receptor for several extracellular ligands. On hepatocytes, ecto-F(0)F(1)ATPsynthase binds apoA-I and triggers HDL endocytosis concomitant with ATP hydrolysis. Considering that inhibitor protein IF(1) was shown to regulate the hydrolytic activity of ecto-F(0)F(1)ATPsynthase and to interact with calmodulin (CaM) in vitro, we investigated the subcellular distributions of IF(1), calmodulin (CaM), OSCP and beta subunits of F(0)F(1)ATPsynthase in HepG2 cells. Using immunofluorescence and Western blotting, we found that around 50% of total cellular IF(1) is localized outside mitochondria, a relevant amount of which is associated to the plasma membrane where we also found Ca(2+)-CaM, OSCP and beta. Confocal microscopy showed that IF(1) colocalized with Ca(2+)-CaM on plasma membrane but not in mitochondria, suggesting that Ca(2+)-CaM may modulate the cell surface availability of IF(1) and thus its ability to inhibit ATP hydrolysis by ecto-F(0)F(1)ATPsynthase. These observations support a hypothesis that the IF(1)-Ca(2+)-CaM complex, forming on plasma membrane, functions in the cellular regulation of HDL endocytosis by hepatocytes.
BACKGROUND AND PURPOSE3-iodothyronamine (T1AM) is a metabolite of thyroid hormone acting as a signalling molecule via non-genomic effectors and can reach intracellular targets. Because of the importance of mitochondrial F0F1-ATP synthase as a drug target, here we evaluated interactions of T1AM with this enzyme. EXPERIMENTAL APPROACHKinetic analyses were performed on F0F1-ATP synthase in sub-mitochondrial particles and soluble F1-ATPase. Activity assays and immunodetection of the inhibitor protein IF1 were used and combined with molecular docking analyses. Effects of T1AM on H9c2 cardiomyocytes were measured by in situ respirometric analysis. KEY RESULTST1AM was a non-competitive inhibitor of F0F1-ATP synthase whose binding was mutually exclusive with that of the inhibitors IF1 and aurovertin B. Both kinetic and docking analyses were consistent with two different binding sites for T1AM. At low nanomolar concentrations, T1AM bound to a high-affinity region most likely located within the IF1 binding site, causing IF1 release. At higher concentrations, T1AM bound to a low affinity-region probably located within the aurovertin binding cavity and inhibited enzyme activity. Low nanomolar concentrations of T1AM increased ADP-stimulated mitochondrial respiration in cardiomyocytes, indicating activation of F0F1-ATP synthase consistent with displacement of endogenous IF1,, reinforcing the in vitro results. CONCLUSIONS AND IMPLICATIONSEffects of T1AM on F0F1-ATP synthase were twofold: IF1 displacement and enzyme inhibition. By targeting F0F1-ATP synthase within mitochondria, T1AM might affect cell bioenergetics with a positive effect on mitochondrial energy production at low, endogenous, concentrations. T1AM putative binding locations overlapping with IF1 and aurovertin binding sites are described. AbbreviationsDmH + , proton motive force; ASp, AS particles;; IF1, F0F1-ATP synthase inhibitor protein; Ki inhibition constant; SMP, Mg-ATP sub-mitochondrial particles; T1AM, 3-iodothyronamine BJP British Journal of Pharmacology
The catalytic sites of beef heart mitochondrial F1-ATPase were studied by electron spin echo envelope modulation (ESEEM) spectroscopy, using Mn(II) as a paramagnetic probe, which replaces the naturally occurring Mg(II), maintaining the enzyme catalytic activity. F1-ATPase was purified from beef heart mitochondria. A protein still containing three endogenous nucleotides, named MF1(1,2), is obtained under milder conditions, whereas a harsher treatment gives a fully depleted F1, named MF1(0,0). Several samples were prepared, loading MF1(0,0) or MF1(1,2) with Mn(II) or MnIIADP in both substoichiometric and excess amounts. When MF1(1,2) is loaded with Mn(II) in a 1:0.8 ratio, the FT-ESEEM spectrum shows evidence of a nitrogen interacting with the metal, while this interaction is not present in MF1(0,0) + Mn(II) in a 1:0.8 ratio. However, when MF1(0,0) is loaded with 2.4 Mn(II), the FT-ESEEM spectrum shows a metal-nitrogen interaction resembling that present in MF1(1,2) + Mn(II) in a 1:0.8 ratio. These results strongly support the role of the metal alone in shaping and structuring the catalytic sites of the enzyme. When substoichiometric ADP is added to MF1(1,2) preloaded with 0.8 equiv of Mn(II), the ESEEM spectra show evidence of a phosphorus nucleus coupled to the metal, indicating that the nucleotide phosphate binding to Mn(II) occurs in a catalytic site. Generally, 14N coordination to the metal is clearly identified in the ESEEM spectra of all the samples containing more than one metal equivalent. One point of note is that the relevant nitrogen-containing ligand(s), responsible for the signals in the ESEEM spectra, has not yet been identified in the available X-ray structures.
The natural inhibitor proteins IF1 regulate mitochondrial F0F1 ATPsynthase in a wide range of species. We characterized the interaction of CaM with purified bovine IF1, two bovine IF1 synthetic peptides, as well as two homologous proteins from yeast, namely IF1 and STF1. Fluorometric analyses showed that bovine and yeast inhibitors bind CaM with a 1:1 stoichiometry in the pH range between 5 and 8 and that CaM-IF1 interaction is Ca2+-dependent. Bovine and yeast IF1 have intermediate binding affinity for CaM, while the Kd (dissociation constant) of the STF1-CaM interaction is slightly higher. Binding studies of CaM with bovine IF1 synthetic peptides allowed us to identify bovine IF1 sequence 33-42 as the putative CaM-binding region. Sequence alignment revealed that this region contains a hydrophobic motif for CaM binding, highly conserved in both yeast IF1 and STF1 sequences. In addition, the same region in bovine IF1 has an IQ motif for CaM binding, conserved as an IQ-like motif in yeast IF1 but not in STF1. Based on the pH and Ca2+ dependence of IF1 interaction with CaM, we suggest that the complex can be formed outside mitochondria, where CaM could regulate IF1 trafficking or additional IF1 roles not yet clarified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.