In addition to tyrosine sites, FAK (focal adhesion kinase) is phosphorylated on multiple serine residues. In the present study, the regulation of two of these sites, Ser-722 (S1) and Ser-911 (S4), was investigated. Phosphorylation of S1 (but not S4) decreased in resuspended cells, and recovered during spreading on fibronectin, indicating adhesion-dependent regulation. GSK3 (glycogen synthase kinase 3) inhibitors decreased S1 phosphorylation, and siRNA (short interfering RNA) silencing indicated further the involvement of GSK3beta. Furthermore, GSK3beta was found to become activated during cell spreading on fibronectin, and to physically associate with FAK. S1 phosphorylation was observed to decrease in wounded cell monolayers, while GSK3beta underwent inactivation and later was observed to increase to the original level within 24 h. Direct phosphorylation of S1, requiring pre-phosphorylation of Ser-726 in the +4 position, was demonstrated using purified GSK3 and a synthetic peptide containing FAK residues 714-730. An inhibitory role for S1 phosphorylation in FAK signalling was indicated by findings that both alanine substitution for S1 and dephosphorylation of S1 by PP1 (serine/threonine protein phosphatase type-1) resulted in an increase in FAK kinase activity; likewise, this role was also shown by cell treatment with the GSK3 inhibitor LiCl. The inhibitory role was confirmed by the finding that cells expressing FAK with alanine substitution for S1 displayed improved cell spreading and faster migration in wound-healing and trans-well assays. Finally, the finding that S1 phosphorylation increased in cells treated with the PP1 inhibitor okadaic acid indicated targeting of this site by PP1. These results indicate an additional mechanism for regulation of FAK activity during cell spreading and migration, involving Ser-722 phosphorylation modulated through the competing actions of GSK3beta and PP1.
In the present work we performed a cytogenetic analysis of the ribosomal (18S + 28S and 5S) loci in amphibian species belonging to the advanced family Salamandridae (genera Triturus, Salamandra, and Salamandrina) and in the primitive hynobiid Salamandrella keyserlingii (family Hynobiidae). In each analyzed karyotype the 5S rDNA sites appear to be stable, and definite in number, while an intraspecific variability both in number and chromosomal location of the 18S + 28S rDNA loci has been found in some Triturus species. In particular, an evolutionary trend toward a large intraspecific variability of the 18S + 28S rDNA loci has been found in the T. vulgaris species group. A structural analysis of the ribosomal repetition units demonstrates the occurrence of a length polymorphism within the 18S + 28S rDNA repeats in the examined species of the family Salamandridae; however, this polymorphism is rather limited, even in those Triturus species characterized by high intragenomic variability of the ribosomal sites. We show that in T. vulgaris meridionalis the variant repetition units actually segregate with individual chromosomes. This implies that they are not intermingled in the ribosomal clusters.
SUMMARYSerotonin (5-HT) is a neuromodulator that plays many different roles in adult and embryonic life. Among the 5-HT receptors, 5-HT2B is one of the key mediators of 5-HT functions during development. We used Xenopus laevis as a model system to further investigate the role of 5-HT2B in embryogenesis, focusing on craniofacial development. By means of gene gain-and loss-offunction approaches and tissue transplantation assays, we demonstrated that 5-HT2B modulates, in a cell-autonomous manner, postmigratory skeletogenic cranial neural crest cell (NCC) behavior without altering early steps of cranial NCC development and migration. 5-HT2B overexpression induced the formation of an ectopic visceral skeletal element and altered the dorsoventral patterning of the branchial arches. Loss-of-function experiments revealed that 5-HT2B signaling is necessary for jaw joint formation and for shaping the mandibular arch skeletal elements. In particular, 5-HT2B signaling is required to define and sustain the Xbap expression necessary for jaw joint formation. To shed light on the molecular identity of the transduction pathway acting downstream of 5-HT2B, we analyzed the function of phospholipase C beta 3 (PLC) in Xenopus development and showed that PLC is the effector of 5-HT2B during craniofacial development. Our results unveiled an unsuspected role of 5-HT2B in craniofacial development and contribute to our understanding of the interactive network of patterning signals that is involved in the development and evolution of the vertebrate mandibular arch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.