We study the direct enstrophy cascade in a two-dimensional flow generated in an electromagnetically driven thin layer of fluid. Due to the presence of bottom friction, the energy spectrum deviates from the classical Kraichnan prediction k −3. We find that the correction to the spectral slope depends on the thickness on the layer, in agreement with a theoretical prediction based on the analogy with passive scalar statistics.
The laboratory modelling of a rotating turbulent flow subjected to a beta-effect by means of laboratory experiments is considered. In particular the focus has been put on the emergence and the evolution of zonal jet-like structures due to the anisotropization of the upscale energy transfer that can be observed in geophysical flows. The experimental setup consists of a rotating tank in which a turbulent flow is reproduced by electromagnetically forcing a shallow layer of saline solution; this model then reproduces the dynamics in the polar regions simulating the so-called gamma-plane by the parabolic surface of the rotating fluid. Several experiments have been performed by changing the main external parameters in order to investigate if the setup is suitable for reproducing the basic dynamics associated with a banded configuration analogous to large scale atmospheric and oceanic circulations. Velocity measurements performed by image analysis have allowed characterization of the flow in terms of mean azimuthal velocity, degree of anisotropy, distribution of energy, and characteristic scales. As expected, zonal jets have been found to dominate the dynamics when the beta-effect is stronger. (C) 2013 AIP Publishing LLC
Exp Fluids (2013) 54(1):1-9 The final publication is available at Springer via http://dx.doi.org/10.1007/s00348-013-1609-0 1 The laboratory models of the human heart left ventricle developed in the last decades gave a valuable contribution to the comprehension of the role of the fluid dynamics in the cardiac function and to support the interpretation of the data obtained in vivo. Nevertheless, some questions are still open and new ones stem from the continuous improvements in the diagnostic imaging techniques. Many of these unresolved issues are related to the three-dimensional structure of the leftventricular flow during the cardiac cycle. In this paper we investigated in detail this aspect using a laboratory model. The ventricle was simulated by a flexible sack varying its volume in time according to a physiologically shaped law. Velocities measured during several cycles on series of parallel planes, taken from two orthogonal points of view, were combined together in order to reconstruct the phase averaged, threedimensional velocity field. During the diastole, three main steps are recognized in the evolution of the vortical structures: i) straight propagation in the direction of the long axis of a vortex-ring originated from the mitral orifice; ii) asymmetric development of the vortex-ring on an inclined plane; iii) single vortex formation. The analysis of three-dimensional data gives the experimental evidence of the reorganization of the flow in a single vortex persisting until the end of the diastole. This flow pattern seems to optimize the cardiac function since it directs velocity towards the aortic valve just before the systole and minimizes the fraction of blood residing within the ventricle for more cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.