The 2016 Mw ≥ 6.0 Amatrice‐Norcia earthquakes (central Apennines, Italy) and the related seismic sequence were associated with increases in arsenic and vanadium concentrations recorded in groundwater springs a few months before the earthquakes occurred. To evaluate these signals as reliable seismic precursors and effective predictive tools, we studied the geochemical processes that caused these anomalies. Using chemical and isotope models, we show that increased concentrations of arsenic and vanadium, a slight increase in boron concentrations, and a concomitant lowering of the boron isotope ratio may be due to mineral desorption (e.g., from iron oxides and/or clays). We argue that a displacing effect on the trace elements sorbed on minerals was triggered by an excess of deep CO2 in groundwater, which occurred prior to the main seismic event as a result of preseismic crustal dilation. Our observations confirm the pivotal role of CO2 in the release of trace elements by alteration of solid phases and provide a new understanding of earthquake‐related water chemical anomalies.
Knowing water quality at larger scales and related ground and surface water interactions impacted by land use and climate is essential to our future protection and restoration investments. Population growth has driven humankind into the Anthropocene where continuous water quality degradation is a global phenomenon as shown by extensive recalcitrant chemical contamination, increased eutrophication, hazardous algal blooms, and faecal contamination connected with microbial hazards antibiotic resistance. In this framework, climate change and related extreme events indeed exacerbate the negative trend in water quality. Notwithstanding the increasing concern in climate change and water security, research linking climate change and groundwater quality remain early. Additional research is required to improve our knowledge of climate and groundwater interactions and integrated groundwater management. Long-term monitoring of groundwater, surface water, vegetation, and land-use patterns must be supported and fortified to quantify baseline properties. Concerning the ways climate change affects water quality, limited literature data are available. This study investigates the link between climate change and groundwater quality aquifers by examining case studies of regional carbonate aquifers located in Central Italy. This study also highlights the need for strategic groundwater management policy and planning to decrease groundwater quality due to aquifer resource shortages and climate change factors. In this scenario, the role of the Society of Environmental Geochemistry is to work together within and across geochemical environments linked with the health of plants, animals, and humans to respond to multiple challenges and opportunities made by global warming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.