A seismic sequence in central Italy from August 2016 to January 2017 affected groundwater dynamics in fractured carbonate aquifers. Changes in spring discharge, water-table position, and streamflow were recorded for several months following nine Mw 5.0-6.5 seismic events. Data from 22 measurement sites, located within 100 km of the epicentral zones, were analyzed. The intensity of the induced changes were correlated with seismic magnitude and distance to epicenters. The additional post-seismic discharge from rivers and springs was found to be higher than 9 m 3 /s, totaling more than 0.1 km 3 of groundwater release over 6 months. This huge and unexpected contribution increased streamflow in narrow mountainous valleys to previously unmeasured peak values. Analogously to the L'Aquila 2009 postearthquake phenomenon, these hydrogeological changes might reflect an increase of bulk hydraulic conductivity at the aquifer scale, which would increase hydraulic heads in the discharge zones and lower them in some recharge areas. The observed changes may also be partly due to other mechanisms, such as shaking and/or squeezing effects related to intense subsidence in the core of the affected area, where effects had maximum extent, or breaching of hydraulic barriers.
A sustained increase in spring discharges was monitored after the 2016 Central Italy seismic sequence in the fractured carbonate aquifer of Valnerina-Sibillini Mts. The groundwater surplus recorded between August 2016 and November 2017 was determined to be between 400 and 500 × 10 6 m 3 . In fractured aquifers, the post-seismic rise in spring discharges is generally attributed to an increase in bulk permeability caused by the fracture cleaning effect, which is induced by pore pressure propagation. In the studied aquifers, the large amount of additional discharge cannot only be attributed to the enhanced permeability, which was evaluated to be less than 20% after each main seismic event. A detailed analysis of the spring discharge hydrographs and of the water level at five gauging stations was carried out to determine the possible causes of this sudden increase in groundwater outflow. Taking into account the geological and structural framework, a conceptual model of a basin-in-series has been adopted to describe the complex hydrogeological setting, where the thrusts and extensional faults have clearly influenced the groundwater flow directions before and after the seismic sequence. The prevalent portion of the total postseismic discharge surplus not explained by the increase in permeability has been attributed to changes in the hydraulic gradient that caused seismogenic fault rupture and the disruption in the upgradient sector of the aquifer. The additional flow calculated through the breach of the pre-existing hydrostructural barrier corresponds to approximately 470 × 10 6 m 3 . This value is consistent with the total discharge increase measured in the whole study area, validating the proposed conceptual model. Consequently, a shift in the piezometric divide of the hydrogeological system has been induced, causing a potentially permanent change that lowers the discharge amount of the eastern springs.
Knowing water quality at larger scales and related ground and surface water interactions impacted by land use and climate is essential to our future protection and restoration investments. Population growth has driven humankind into the Anthropocene where continuous water quality degradation is a global phenomenon as shown by extensive recalcitrant chemical contamination, increased eutrophication, hazardous algal blooms, and faecal contamination connected with microbial hazards antibiotic resistance. In this framework, climate change and related extreme events indeed exacerbate the negative trend in water quality. Notwithstanding the increasing concern in climate change and water security, research linking climate change and groundwater quality remain early. Additional research is required to improve our knowledge of climate and groundwater interactions and integrated groundwater management. Long-term monitoring of groundwater, surface water, vegetation, and land-use patterns must be supported and fortified to quantify baseline properties. Concerning the ways climate change affects water quality, limited literature data are available. This study investigates the link between climate change and groundwater quality aquifers by examining case studies of regional carbonate aquifers located in Central Italy. This study also highlights the need for strategic groundwater management policy and planning to decrease groundwater quality due to aquifer resource shortages and climate change factors. In this scenario, the role of the Society of Environmental Geochemistry is to work together within and across geochemical environments linked with the health of plants, animals, and humans to respond to multiple challenges and opportunities made by global warming.
Environmental isotopes were used to determine the source and to understand the physical–chemical processes involved in groundwater movement along a flowpath. This study applies groundwater stable isotopes to assess snow-cover influence on the recharge processes of some regional carbonate aquifers of central Italy. Starting with extensively investigated aquifers, 17 springs were selected and sampled (June–October 2016) for isotope analyses. The δ18O–δD results follow the local meteoric water line; the low mismatch between the 2016 sampling surveys suggests that those springs are not influenced by seasonal variability. Nevertheless, the average elevations of recharge areas calculated using the vertical isotope gradient were higher compared to those obtained with hypsographic profiles. This means that the relevant contribution to recharge comes from higher elevation areas; hence, snowpack coverage and snowpack persistence over time on recharge areas were analysed using satellite images. Four different relationships between the snowpack characteristics and the elevation of recharge areas have been identified. These offer relevant information about the different degrees of dependence of the regional aquifers of central Italy on the recharge due to high-elevation subbasins where the snowpack cover is significant. A possible correlation emerges between computed isotope recharge elevation and mean snow cover elevation, revealing how snowmelt is a primary source for aquifer recharge. Consequently, to evaluate the risk of groundwater resource depletion in a climate-change scenario, there is discussion on how a potential snow-cover reduction would affect the recharge rate of mountainous aquifers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.