BackgroundCTLA-4 (Cytotoxic T lymphocyte antigen-4) is traditionally known as a negative regulator of T cell activation. The blocking of CTLA-4 using human monoclonal antibodies, such as Ipilimumab, is currently used to relieve CTLA-4-mediated inhibition of anti-tumor immune response in metastatic melanoma. Herein, we have analyzed CTLA-4 expression and Ipilimumab reactivity on melanoma cell lines and tumor tissues from cutaneous melanoma patients. Then, we investigated whether Ipilimumab can trigger innate immunity in terms of antibody dependent cellular cytotoxicity (ADCC) or Tumor Necrosis Factor (TNF)-α release. Finally, a xenograft murine model was set up to determine in vivo the effects of Ipilimumab and NK cells on melanoma.MethodsCTLA-4 expression and Ipilimumab reactivity were analyzed on 17 melanoma cell lines (14 primary and 3 long-term cell lines) by cytofluorimetry and on 33 melanoma tissues by immunohistochemistry. CTLA-4 transcripts were analyzed by quantitative RT-PCR. Soluble CTLA-4 and TNF-α were tested by ELISA. Peripheral blood mononuclear cells (PBMC), NK and γδT cells were tested in ADCC assay with Ipilimumab and melanoma cell lines. TNF-α release was analyzed in NK-melanoma cell co-cultures in the presence of ipilimumab. In vivo experiments of xenotransplantation were carried out in NOD/SCID mice. Results were analyzed using unpaired Student’s t-test.ResultsAll melanoma cell lines expressed mRNA and cytoplasmic CTLA-4 but surface reactivity with Ipilimumab was quite heterogeneous. Accordingly, about 2/3 of melanoma specimens expressed CTLA-4 at different level of intensity.Ipilimumab triggered, via FcγReceptorIIIA (CD16), ex vivo NK cells as well as PBMC, IL-2 activated NK and γδT cells to ADCC of CTLA-4+ melanoma cells. No ADCC was detected upon interaction with CTLA-4- FO-1 melanoma cell line. TNF-α was released upon interaction of NK cells with CTLA-4+ melanoma cell lines. Remarkably, Ipilimumab neither affected proliferation and viability nor triggered ADCC of CTLA-4+ T lymphocytes. In a chimeric murine xenograft model, the co-engraftment of Ipilimumab-treated melanoma cells with human allogeneic NK cells delayed and significantly reduced tumor growth, as compared to mice receiving control xenografts.ConclusionsOur studies demonstrate that Ipilimumab triggers effector lymphocytes to cytotoxicity and TNF-α release. These findings suggest that Ipilimumab, besides blocking CTLA-4, can directly activate the elimination of CTLA-4+ melanomas.
The role of CTLA-4 in negative regulation of T-cell mediated immune response is particularly well established. Much less is known about its expression and function in tumour cells, and to our knowledge, no data are available on its possible impact on prognosis of NSCLC patients. We investigated CTLA-4 expression and prognostic role in 81 patients with radically resected stage I-III NSCLC. The analysis was performed by tissue microarray immunohistochemistry, and the median H-score of 20 was used as a threshold to define CTLA-4 overexpressing tumours. Correlation with standard prognostic factors was performed by using absolute and relative fold change indexes. Hazard ratios (HR) and corresponding 95% confidence limits (95% CL) were computed through the Cox model. A higher frequency of CTLA-4 overexpression (>20) was found in non-squamous than in squamous NSCLC (52.8 vs. 35.7%) and in Ki67 ≤ 15 expressing tumours, as compared to those with Ki67 > 15 (51.5 vs. 38.7%). A reduced death rate was found in CTLA-4 overexpressing tumours (HR = 0.60, 95% CL = 0.28/1.23), and a further decrease was observed when considering tumours with CTLA-4 > 20 and Ki67 ≤ 15, in comparison with tumours with CTLA-4 ≤ 20 and Ki67 > 15 (HR = 0.41; 95% CL = 0.15/1.13). Our observational and exploratory study provides a first and promising indication for an independent prognostic effect of CTLA-4 overexpression in radically resected NSCLC. We presume that this effect relies on modulation of the interaction of microscopic disease with CTLA-4-ligands expressing cells leading to NSCLC cell death.
Cytotoxic T lymphocyte antigen-4 (CTLA-4) is the major negative regulator of T-cell responses, although growing evidence supports its wider role as an immune attenuator that may also act in other cell lineages. Here, we have analyzed the expression of CTLA-4 in human monocytes and monocyte-derived dendritic cells (DCs), and the effect of its engagement on cytokine production and T-cell stimulatory activity by mature DCs. CTLA-4 was highly expressed on freshly isolated monocytes, then down-modulated upon differentiation toward immature DCs (iDCs) and it was markedly upregulated on mature DCs obtained with different stimulations (lipopolysaccharides [LPS], Poly:IC, cytokines). In line with the functional role of CTLA-4 in T cells, treatment of mDCs with an agonistic anti-CTLA-4 mAb significantly enhanced secretion of regulatory interleukin (IL)-10 but reduced secretion of IL-8/IL-12 pro-inflammatory cytokines, as well as autologous CD4+ T-cell proliferation in response to stimulation with recall antigen purified protein derivative (PPD) loaded-DCs. Neutralization of IL-10 with an anti-IL-10 antibody during the mDCs-CD4+ T-cell co-culture partially restored the ability of anti-CTLA-4-treated mDCs to stimulate T-cell proliferation in response to PPD. Taken together, our data provide the first evidence that CTLA-4 receptor is expressed by human monocyte-derived mDCs upon their full activation and that it exerts immune modulatory effects.
CTLA-4 function as a negative regulator of T cell-mediated immune response is well established, whereas much less is known about the immunoregulatory role of its soluble isoform (sCTLA-4). No data are available on CTLA-4 expression and prognostic impact in malignant pleural mesothelioma (MPM). We investigated, by immunohistochemistry, CTLA-4 expression in tumor tissues and, by ELISA, sCTLA-4 levels in sera and matched pleural effusions from 45 MPM patients. Prognostic effect of CTLA-4 expression on overall survival (OS) was assessed through Cox regression and prognostic significance expressed as death rate ratio (HR). We found that 56.0 % of MPM tissues expressed CTLA-4 with variable intensity and percentage of positive cells estimated by the immunoreactive score. sCTLA-4 levels were significantly higher in sera (S-sCTLA-4) than in pleural effusions (PE-sCTLA-4) (geometric mean ratio = 2.70, P value = 0.020). CTLA-4 expression at the tissue level was higher in the epithelioid histological subtype than in the sarcomatoid, whereas at the serum level, it was higher in the sarcomatoid subtype. A homogeneous favorable prognostic effect was found for CTLA-4 overexpression in tissue, serum and pleural effusion. Interestingly, only the PE-sCTLA-4 was found to be a statistically significant positive prognostic factor (HR = 0.37, 95 % CI = 0.18-0.77, P value = 0.007). Indeed, PE-sCTLA-4 correlated with CTLA-4 expression in tissues, whereas this latter expression showed a weak association with OS. To confirm our findings, further experimental evidences obtained from a larger cohort of MPM patients are required. However, our results would indicate a positive correlation of PE-sCTLA-4 levels and OS in MPM patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.