It is well known that the hypothalamo-pituitary-adrenal (HPA) axis is altered by early environmental experiences, particularly in the perinatal period. This may be one mechanism by which the environment changes the physiology of the animal such that individual differences in adult adaptative capabilities, such as behavioral reactivity and memory performance, are observable. To determine the origin of these behavioral individual differences, we have investigated whether the long-term influence of prenatal and postnatal experiences on emotional and cognitive behaviors in adult rats are correlated with changes in HPA activity. To this end, prenatal stress of rat dams during the last week of gestation and postnatal daily handling of rat pups during the first 3 weeks of life were used as two environmental manipulations. The behavioral reactivity of the adult offspring in response to novelty was evaluated using four different parameters: the number of visits to different arms in a Y-maze, the distance covered in an open field, the time spent in the corners of the open field, and the time spent in the open arms of an elevated plus-maze. Cognitive performance was assessed using a water maze and a two-trial memory test. Adult prenatally stressed rats showed high anxiety-like behavior, expressed as an escape behavior to novelty correlated with high secretion of corticosterone in response to stress, whereas adult handled rats exhibited low anxiety-like behavior, expressed as high exploratory behavior correlated with low secretion of corticosterone in response to stress. On the other hand, neither prenatal stress nor handling changed spatial learning or memory performance. Taken together, these results suggest that individual differences in adult emotional status may be governed by early environmental factors; however, perinatal experiences are not effective in influencing adult memory capacity.
The development of the organism is subjected to critical and complex influences during the perinatal period. Prenatal and postnatal stresses can have different long-term behavioral effects, and appropriate postnatal manipulations can counteract the behavioral effects of prenatal stress. In the present study, we investigated the involvement of changes in the activity of the hypothalamo-pituitary-adrenal (HPA) axis in the long-term effects of prenatal and postnatal events and of interactions between them. We investigated stress-induced corticosterone secretion and hippocampal corticosteroid receptors in male adult rats submitted to prenatal and/or postnatal manipulations.Repeated restraint during the last week of pregnancy was used as prenatal stressor, and adoption at birth was used to change the postnatal environment. We found that (1) prenatal stress prolongs stressinduced corticosterone secretion in adult rats, which was attributed to the observed decrease in central corticosteroid receptors; (2) adoption, irrespective of the stress experience of the foster mother, reverses the effects of prenatal stress; and (3) adoption per se increases maternal behavior and decreases the stress-induced corticosterone secretion peak in the adult offspring. In conclusion, certain prenatal and postnatal manipulations appear to have opposite long-term effects on the activity of the HPA axis, and adoption, probably by modifying maternal behavior, can protect against the effects of prenatal stress. Thus, changes in the activity of the HPA axis may be one of the biological substrates of the long-term effects of certain perinatal events.[Key words: corticosterone, corticosteroid receptors, hippocampus, prenatal stress, adoption, postnatal stress, pefinatal environment] Prenatal and postnatal environments exercise complex influences on the development of an organism. In particular, life events occurring during these two early periods of life can have different long-term behavioral effects. For example, in man, prenatal stress can induce mental retardation and sleep distur-
There is growing evidence that stressors occurring during pregnancy can impair biological and behavioral adaptation to stress in the adult offspring. Mechanisms by which stress in the pregnant rat can influence development of the offspring are still unknown. In the present study, we investigated the involvement of maternal corticosterone secretion during pregnancy on the hypothalamo-pituitary-adrenal axis activity of adult offspring. We investigated stress-induced corticosterone secretion and hippocampal type I and type II corticosteroid receptors in male adult rats submitted to prenatal stress born to either mothers with intact corticosterone secretion or mothers in which stress-induced corticosterone secretion was blocked by adrenalectomy with substitutive corticosterone therapy. Repeated restraint during the last week of pregnancy was used as prenatal stressor. Furthermore, the specific role of an injection of corticosterone before the restraint stress on adrenalectomized mothers with substitutive corticosterone treatment was also studied. We report here that blockade of the mother's stress-induced glucocorticoid secretion suppresses the prolonged stress-induced corticosteroid response and the decrease in type I hippocampal corticosteroid receptors usually observed in prenatally stressed adults. Conversely, corticosterone administered during stress, to mothers in which corticosterone secretion is blocked, reinstates the effects of prenatal stress. These results suggest for the first time that stress-induced increases in maternal glucocorticoids may be a mechanism by which prenatal stress impairs the development of the adult offspring's glucocorticoid response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.