▪ Abstract The use of stable isotope techniques in plant ecological research has grown steadily during the past two decades. This trend will continue as investigators realize that stable isotopes can serve as valuable nonradioactive tracers and nondestructive integrators of how plants today and in the past have interacted with and responded to their abiotic and biotic environments. At the center of nearly all plant ecological research which has made use of stable isotope methods are the notions of interactions and the resources that mediate or influence them. Our review, therefore, highlights recent advances in plant ecology that have embraced these notions, particularly at different spatial and temporal scales. Specifically, we review how isotope measurements associated with the critical plant resources carbon, water, and nitrogen have helped deepen our understanding of plant-resource acquisition, plant interactions with other organisms, and the role of plants in ecosystem studies. Where possible we also introduce how stable isotope information has provided insights into plant ecological research being done in a paleontological context. Progress in our understanding of plants in natural environments has shown that the future of plant ecological research will continue to see some of its greatest advances when stable isotope methods are applied.
Partial mycoheterotrophy, a newly discovered form of mixotrophy in plants, has been described in at least two major lineages of angiosperms, the orchids and ericaceous plants in the tribe Pyroleae. Partial mycoheterotrophy entails carbon gains both directly from photosynthesis and via symbiotic mycorrhizal fungi, but determining the degree of plant dependence on fungal carbon is challenging. The purpose of this study was to determine if two chlorophyllous species of Pyroleae, Chimaphila umbellata and Pyrola picta, were receiving carbon via mycorrhizal networks and, if so, if their proportional dependency on fungal carbon gains increased under reduced light conditions. This was accomplished by a field experiment that manipulated light and plants' access to mycorrhizal networks, and by using the stable carbon isotope composition (δ(13)C) of leaf soluble sugars as a marker for the level of mycoheterotrophy. Based on leaf soluble sugars δ(13)C values, we calculated a site-independent isotope enrichment factor as a measure of fungal contributions to plant C. We found that, under each treatment and over time, the two test species demonstrated different isotopic responses caused by their different intrinsic physiologies. Our data, along with previously published studies, suggest that Chimaphila umbellata is primarily an autotrophic understory plant, while Pyrola picta may be capable of partial mycoheterotrophy. However, in this study, a 50% decrease in light availability did not significantly change the relative dependency of P. picta on carbon gains via mycoheterotrophy.
Arbuscular mycorrhizal fungi (AMF) can help mitigate plant responses to water stress, but it is unclear whether AMF do so by indirect mechanisms, direct water transport to roots, or a combination of the two. Here, we investigated if and how the AMF Rhizophagus intraradices transported water to the host plant Avena barbata, wild oat.We used two-compartment microcosms, isotopically labeled water, and a fluorescent dye to directly track and quantify water transport by AMF across an air gap to host plants.Plants grown with AMF that had access to a physically separated compartment containing 18 O-labeled water transpired almost twice as much as plants with AMF excluded from that compartment. Using an isotopic mixing model, we estimated that water transported by AMF across the air gap accounted for 34.6% of the water transpired by host plants. In addition, a fluorescent dye indicated that hyphae were able to transport some water via an extracytoplasmic pathway.Our study provides direct evidence that AMF can act as extensions of the root system along the soil-plant-air continuum of water movement, with plant transpiration driving water flow along hyphae outside of the hyphal cell membrane.
Stomatal response to leaf water status was experimentally manipulated by pressurizing the soil and roots of potted common bean plants enclosed in a custom-built root pressure chamber. Gas exchange was monitored using a wholeplant cuvette and plant water status using in situ leaf psychrometry. Bean plants re-opened their stomata upon pressurization, but the extent of re-opening was strongly dependent on the time of day when the soil was pressurized, with maximum re-opening in the morning hours and limited re-opening in the afternoon. Neither leaf nor xylem abscisic acid concentrations could explain the reduced response to pressurization in the afternoon. The significance of this phenomenon is discussed in the context of circadian rhythms and of other recent findings on the 'apparent feed-forward response' of the stomata of some species to vapour pressure deficit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.