The BioMart Community Portal (www.biomart.org) is a community-driven effort to provide a unified interface to biomedical databases that are distributed worldwide. The portal provides access to numerous database projects supported by 30 scientific organizations. It includes over 800 different biological datasets spanning genomics, proteomics, model organisms, cancer data, ontology information and more. All resources available through the portal are independently administered and funded by their host organizations. The BioMart data federation technology provides a unified interface to all the available data. The latest version of the portal comes with many new databases that have been created by our ever-growing community. It also comes with better support and extensibility for data analysis and visualization tools. A new addition to our toolbox, the enrichment analysis tool is now accessible through graphical and web service interface. The BioMart community portal averages over one million requests per day. Building on this level of service and the wealth of information that has become available, the BioMart Community Portal has introduced a new, more scalable and cheaper alternative to the large data stores maintained by specialized organizations.
The recent hypothesis that postnatal microglia are maintained independently of circulating monocytes by local precursors that colonize the brain before birth has relevant implications for the treatment of various neurological diseases, including lysosomal storage disorders (LSDs), for which hematopoietic cell transplantation (HCT) is applied to repopulate the recipient myeloid compartment, including microglia, with cells expressing the defective functional hydrolase. By studying wild-type and LSD mice at diverse time-points after HCT, we showed the occurrence of a short-term wave of brain infiltration by a fraction of the transplanted hematopoietic progenitors, independently from the administration of a preparatory regimen and from the presence of a disease state in the brain. However, only the use of a conditioning regimen capable of ablating functionally defined brain-resident myeloid precursors allowed turnover of microglia with the donor, mediated by local proliferation of early immigrants rather than entrance of mature cells from the circulation.
IntroductionStable genetic modification of hematopoietic stem/progenitor cells (HSPCs) is achieved with retroviral vectors (RVs) that integrate into the cell genome and express a therapeutic transgene. 1 Transplantation of genetically modified autologous HSPCs provides a therapeutic option for patients with genetic disorders. [1][2][3] However, in clinical trials for X-linked severe combined immunodeficiency (X-SCID) and chronic granulomatous disease (CGD) oncogenesis triggered by ␥RV-mediated insertional mutagenesis has occurred. Leukemic or myelodysplastic cell clones in patients from these trials harbored RV integrations at common insertion sites (CISs) targeting recurrently LMO2 or MDS1-EVI1, PRDM16, SETBP1, and other genes. [4][5][6][7] Alternative to ␥RVs, HIV-derived self-inactivating lentiviral vectors (LVs) transduce human HSPCs efficiently and display a superior safety profile with respect to ␥RVs as shown in in vitro and in vivo preclinical mouse models. [8][9][10][11] Moreover, good efficacy and safety of LVs has also been documented in a recent HSPC-based clinical trial for X-linked adrenoleukodystrophy (ALD). 3 However, a careful LV integration site analysis in derived cells from patients with ALD showed that relevant numbers of CISs were present. 3 This observation raises concerns 12 because the detection of CISs is a well-established hallmark of insertional mutagenesis in mice 13,14 and clinical trials. 5,7,15 Thus, it is possible that the occurrence of CISs in the ALD clinical trial is a still silent effect of genotoxicity. To understand whether CISs generated by LV integrations are the product of genotoxicity we generated our own dataset of LV integrations in human HSPCs and their progeny after engraftment in immunodeficient mice and studied the integration pattern and the clonal repertoire of vector-marked cells in in vitro culture and in vivo. Moreover, we performed an extensive comparison between our dataset and the integrations found in the ALD clinical trial and in other gene therapy trials that reported insertional leukemogenesis, as well as in mice subjected to RV-mediated oncogene tagging. From our own integration data and the meta-analysis of the other integration datasets we provide evidence that the driving force leading to the appearance of CISs in LV-transduced HSPCs from the ALD clinical trial reflects a previously unappreciated bias of LVs in integration site selection rather oncogenic selection. Methods LV production and isolation and transduction of human HSPCsLV.ARSA (arylsulfatase A) and LV.GFP (green fluorescent protein) were produced with the use of the pCCLsin.cPPT.hPGK.hARSA.WPREmut6 and the pCCLsin.cPPT.hPGK.GFP.Wpre transfer plasmids. 16 Vesicular stomatitis virus-pseudotyped LV-concentrated stocks were produced and titered as described. 17 Human HSPCs were obtained by positive selection of CD34-expressing cells (CD34 progenitor cell isolation kit, MACS; Miltenyi Biotec) from BM aspirates, mobilized peripheral blood (MPB), or CB of healthy donors on collection with info...
Self-inactivating (SIN) lentiviral vectors (LV) have an excellent therapeutic potential as demonstrated in preclinical studies and clinical trials. However, weaker mechanisms of insertional mutagenesis could still pose a significant risk in clinical applications. Taking advantage of novel in vivo genotoxicity assays, we tested a battery of LV constructs, including some with clinically relevant designs, and found that oncogene activation by promoter insertion is the most powerful mechanism of early vector-induced oncogenesis. SIN LVs disabled in their capacity to activate oncogenes by promoter insertion were less genotoxic and induced tumors by enhancer-mediated activation of oncogenes with efficiency that was proportional to the strength of the promoter used. On the other hand, when enhancer activity was reduced by using moderate promoters, oncogenesis by inactivation of tumor suppressor gene was revealed. This mechanism becomes predominant when the enhancer activity of the internal promoter is shielded by the presence of a synthetic chromatin insulator cassette. Our data provide both mechanistic insights and quantitative readouts of vector-mediated genotoxicity, allowing a relative ranking of different vectors according to these features, and inform current and future choices of vector design with increasing biosafety.
Gamma-retroviral/lentiviral vectors (γRV/LV) with self-inactivating (SIN) long terminal repeats (LTRs) and internal moderate cellular promoters pose a reduced risk of insertional mutagenesis when compared with vectors with active LTRs. Yet, in a recent LV-based clinical trial for β-thalassemia, vector integration within the HMGA2 gene induced the formation of an aberrantly spliced mRNA form that appeared to cause clonal dominance. Using a method that we developed, cDNA linear amplification-mediated PCR, in combination with high-throughput sequencing, we conducted a whole transcriptome analysis of chimeric LV-cellular fusion transcripts in transduced human lymphoblastoid cells and primary hematopoietic stem/progenitor cells. We observed a surprising abundance of read-through transcription originating outside and inside the provirus and identified the vector sequences contributing to the aberrant splicing process. We found that SIN LV has a sharply reduced propensity to engage in aberrant splicing compared with that of vectors carrying active LTRs. Moreover, by recoding the identified vector splice sites, we reduced residual read-through transcription and demonstrated an effective strategy for improving vectors. Characterization of the mechanisms and genetic features underlying vector-induced aberrant splicing will enable the generation of safer vectors, with low impact on the cellular transcriptome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.