Crystalline silicon photovoltaics are a cardinal and well-consolidated technology for the achievement of energy efficiency goals, being installed worldwide for the production of clean electrical energy. However, their performance is strongly penalized by the thermal drift, mostly in periods of high solar radiation where solar cells reach considerably high temperatures. To limit this aspect, the employment of cooling systems appears a promising and viable solution. For this purpose, four different cooling systems, working on the photovoltaic (PV) panel back surface, were proposed and investigated in an experimental set-up located at the University of Calabria (Italy). Hourly electrical output power and efficiency were provided accounting for different meteorological conditions in several months of the experimental campaign. The results demonstrated that a simple spray cooling technique can provide an absolute increment of electrical efficiency of up to 1.6% and an average percentage increment of daily energy of up to 8% in hot months. More complex systems, based on ventilation or combining spray cooling and ventilation, were demonstrated not to be a viable option for PV performance improvement.
This study tackles the analysis of fixed external solar shading systems. The geometry of a building and of the shading system has been parametrically defined and a genetic optimization analysis has been carried out to identify an architectural solution that would allow the increase of energy savings, through a suitable window-to-wall ratio and an accurate design of the shading device. A multi-objective analysis has been performed with the aim of minimizing the energy consumption for space heating, cooling and artificial lighting, while ensuring the visual comfort of the occupants. The main goal of the study is to explore the influence of climatic context on the optimal design of shading devices. The analysis has been performed for three different latitudes across Europe. In all analyzed cases, a reduction of the annual energy consumption could be achieved, up to 42% if the optimal shading configuration is used. Moreover, the possibility of integrating the shading system with photovoltaic (PV) panels has been considered and the electricity production has been estimated.
The ecological transition at the centre of the United Nations 2030 Agenda and the relevant EU policies are increasingly becoming an emerging issue in the political choices of most countries. It is an important challenge to ensure sustainable development and overcome the issue of energy supply. Italy produces 35% of its electricity consumption, a too low percentage that obligates the nation to purchase abroad to cover the overall needs. Energy communities can represent an interesting and viable option for businesses and citizens struggling with the abrupt rising of energy prices. In community energy systems, the energy demand of a group of households or public services is met by electricity collectively generated through renewable sources and this feature is particularly suggested in small towns to promote social benefits and environmental advantages. In this work, possible scenarios of an implementable energy community were investigated for the small mountain municipality of Soveria Mannelli, located in Southern Italy. A building stock made of four public edifices was used as a reference case for which heating needs were determined by dynamic simulations based on the EN ISO 52016-1 procedure. Other simulations carried out in the TRNSYS environment allowed for implementing different schemes of the energy community considering diverse building interaction modes, in which photovoltaic generators and electric batteries cooperate to supply heat pump systems to assure the maximum share of self-consumed electric energy. Indeed, this paper is targeted at the identification of the best solution in terms of technical and economic performance. Despite an evident study limitation is represented by the exclusive use of PV and electric storage systems, the results demonstrate a potential CO2 emission reduction of over 80%. The more profitable solution for the Municipality was identified with an NPV of 11 k€ in 20 years with appreciable payback.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.