Short QT3 syndrome (SQT3S) is a cardiac disorder characterized by a high risk of mortality and associated with mutations in Kir2.1 (KCNJ2) channels. The molecular mechanisms leading to channel dysfunction, cardiac rhythm disturbances and neurodevelopmental disorders, potentially associated with SQT3S, remain incompletely understood. Here, we report on monozygotic twins displaying a short QT interval on electrocardiogram recordings and autism–epilepsy phenotype. Genetic screening identified a novel KCNJ2 variant in Kir2.1 that (i) enhanced the channel's surface expression and stability at the plasma membrane, (ii) reduced protein ubiquitylation and degradation, (iii) altered protein compartmentalization in lipid rafts by targeting more channels to cholesterol-poor domains and (iv) reduced interactions with caveolin 2. Importantly, our study reveals novel physiological mechanisms concerning wild-type Kir2.1 channel processing by the cell, such as binding to both caveolin 1 and 2, protein degradation through the ubiquitin–proteasome pathway; in addition, it uncovers a potential multifunctional site that controls Kir2.1 surface expression, protein half-life and partitioning to lipid rafts. The reported mechanisms emerge as crucial also for proper astrocyte function, suggesting the need for a neuropsychiatric evaluation in patients with SQT3S and offering new opportunities for disease management.
Apoptotic signalling by p53 occurs at both transcriptional and nontranscriptional levels, as p53 may act as a direct apoptogenic stimulus via activation of the intrinsic mitochondrial pathway. HOPS is a highly conserved, ubiquitously expressed shuttling protein with an ubiquitin-like domain. We generated Hops À/À mice and observed that they are viable with no apparent phenotypic defects. However, when treated with chemotherapeutic agents, Hops À/À mice display a significant reduction in apoptosis, suggesting an impaired ability to respond to genotoxic stressors. We show that HOPS acts as a regulator of cytoplasmic p53 levels and function. By binding p53, HOPS inhibits p53 proteasomal degradation and favours p53 recruitment to mitochondria and apoptosis induction. By interfering with importin a, HOPS further increases p53 cytoplasmic levels. Thus, HOPS promotes the p53-dependent mitochondrial apoptosis pathway by preserving cytoplasmic p53 from both degradation and nuclear uptake.
Centrosomes direct microtubule organization during cell division. Aberrant number of centrosomes results from alteration of its components and leads to abnormal mitoses and chromosome instability. HOPS is a newly discovered protein isolated during liver regeneration, implicated in cell proliferation. Here, we provide evidence that HOPS is an integral constituent of centrosomes. HOPS is associated with classical markers of centrosomes and found in cytosolic complexes containing CRM-1, gamma-tubulin, eEF-1A and HSP70. These features suggest that HOPS is involved in centrosome assembly and maintenance. HOPS depletion generates supernumerary centrosomes, multinucleated cells and multipolar spindle formation leading to activation of p53 checkpoint and cell cycle arrest. The presence of HOPS in cytosolic complexes supports that centrosome proteins might be preassembled in the cytoplasm to then be rapidly recruited for centrosome duplication. Altogether these data show HOPS implication in the control of cell division. HOPS contribution appears relevant to understand genomic instability and centrosome amplification in cancer.
The liver has the ability to autonomously regulate growth and mass. Following partial hepatectomy, hormones, growth factors, cytokines and their coupled signal transduction pathways have been implicated in hepatocyte proliferation. To understand the mechanisms responsible for the proliferative response, we studied liver regeneration by characterization of novel genes that are activated in residual hepatocytes. A regenerating liver cDNA library screening was performed with cDNA-subtracted probes derived from regenerating and normal liver. Here, we describe the biology of Hops (for hepatocyte odd protein shuttling). HOPS is a novel shuttling protein that contains an ubiquitin-like domain, a putative NES and a proline-rich region. HOPS is rapidly exported from the nucleus and is overexpressed during liver regeneration. Evidence shows that cAMP governs HOPS export in hepatocytes of normal and regenerating liver and is mediated via CRM-1. We demonstrate that HOPS binds to elongation factor eEF-1A and interferes in protein synthesis. HOPS overexpression in H-35-hepatoma and 3T3-NIH cells strongly reduces proliferation.
It has been shown that neutral-sphingomyelinase and sphingomyelin-synthase activities are present in chromatin and they modify the sphingomyelin (SM) content. The activity of the first enzyme is stimulated and the second inhibited, when the hepatocytes enter into the S-phase after partial hepatectomy, thus suggesting that ceramide may have a pivotal role in cell proliferation. An opposite function was attributed to ceramide in hepatocytes which undergo apoptosis after lobular ligature. In order to clarify this point, a model was developed in which the same liver cells undergo proliferation followed by induced apoptosis. To this purpose, the rats were treated for 7 days with ciprofibrate and then left without treatment for 4 days. During the treatment, the peroxisome enzyme markers increase their activity and the number of proliferating cells increases, reaching a maximum after 3 days of treatment, as shown by the number of cells positive for the proliferating cell nuclear antigen. At the same time, the chromatin sphingomyelinase activity reaches the maximum, while a similar increase is not found in the cytoplasm or in the isolated nuclei. On the contrary, SM-synthase activity is depressed in chromatin, but not in the nuclei in which a peak is shown after 3 days of ciprofibrate treatment. After drug withdrawal, the hepatocytes undergo apoptosis as confirmed by the increase of Bax and tissue transglutaminase (tTGase) expression; the chromatin SM increases as a consequence of an increase of SM-synthase activity. It can be hypothesised that chromatin SM may have a role in cell duplication by influencing the chromatin structure stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.