Predicting community susceptibility to invasion has become a priority for preserving biodiversity. We tested the hypothesis that the occurrence and abundance of the seaweed Caulerpa racemosa in the north-western (NW) Mediterranean would increase with increasing levels of human disturbance. Data from a survey encompassing areas subjected to different human influences (i.e. from urbanized to protected areas) were fitted by means of generalized linear mixed models, including descriptors of habitats and communities. The incidence of occurrence of C. racemosa was greater on urban than extra-urban or protected reefs, along the coast of Tuscany and NW Sardinia, respectively. Within the Marine Protected Area of Capraia Island (Tuscan Archipelago), the probability of detecting C. racemosa did not vary according to the degree of protection (partial versus total). Human influence was, however, a poor predictor of the seaweed cover. At the seascape level, C. racemosa was more widely spread within degraded (i.e. Posidonia oceanica dead matte or algal turfs) than in better preserved habitats (i.e. canopy-forming macroalgae or P. oceanica seagrass meadows). At a smaller spatial scale, the presence of the seaweed was positively correlated to the diversity of macroalgae and negatively to that of sessile invertebrates. These results suggest that C. racemosa can take advantage of habitat degradation. Thus, predicting invasion scenarios requires a thorough knowledge of ecosystem structure, at a hierarchy of levels of biological organization (from the landscape to the assemblage) and detailed information on the nature and intensity of sources of disturbance and spatial scales at which they operate.
Demographic processes exert different degrees of control as individuals grow, and in species that span several habitats and spatial scales, this can influence our ability to predict their population at a particular life-history stage given the previous life stage. In particular, when keystone species are involved, this relative coupling between demographic stages can have significant implications for the functioning of ecosystems. We examined benthic and pelagic abundances of the sea urchin Paracentrotus lividus in order to: 1) understand the main life-history bottlenecks by observing the degree of coupling between demographic stages; and 2) explore the processes driving these linkages. P. lividus is the dominant invertebrate herbivore in the Mediterranean Sea, and has been repeatedly observed to overgraze shallow beds of the seagrass Posidonia oceanica and rocky macroalgal communities. We used a hierarchical sampling design at different spatial scales (100 s, 10 s and <1 km) and habitats (seagrass and rocky macroalgae) to describe the spatial patterns in the abundance of different demographic stages (larvae, settlers, recruits and adults). Our results indicate that large-scale factors (potentially currents, nutrients, temperature, etc.) determine larval availability and settlement in the pelagic stages of urchin life history. In rocky macroalgal habitats, benthic processes (like predation) acting at large or medium scales drive adult abundances. In contrast, adult numbers in seagrass meadows are most likely influenced by factors like local migration (from adjoining rocky habitats) functioning at much smaller scales. The complexity of spatial and habitat-dependent processes shaping urchin populations demands a multiplicity of approaches when addressing habitat conservation actions, yet such actions are currently mostly aimed at managing predation processes and fish numbers. We argue that a more holistic ecosystem management also needs to incorporate the landscape and habitat-quality level processes (eutrophication, fragmentation, etc.) that together regulate the populations of this keystone herbivore.
Seagrasses are globally declining and often their loss is due to synergies among stressors. We investigated the interactive effects of eutrophication and burial on the Mediterranean seagrass, Posidonia oceanica. A field experiment was conducted to estimate whether shoot survival depends on the interactive effects of three levels of intensity of both stressors and to identify early changes in plants (i.e., morphological, physiological and biochemical, and expression of stress-related genes) that may serve to detect signals of imminent shoot density collapse. Sediment burial and nutrient enrichment produced interactive effects on P. oceanica shoot survival, as high nutrient levels had the potential to accelerate the regression of the seagrass exposed to high burial (HB). After 11 weeks, HB in combination with either high or medium nutrient enrichment caused a shoot loss of about 60%. Changes in morphology were poor predictors of the seagrass decline. Likewise, few biochemical variables were associated with P. oceanica survival (the phenolics, ORAC and leaf δS). In contrast, the expression of target genes had the highest correlation with plant survival: photosynthetic genes (ATPa, psbD and psbA) were up-regulated in response to high burial, while carbon metabolism genes (CA-chl, PGK and GADPH) were down-regulated. Therefore, die-offs due to high sedimentation rate in eutrophic areas can only be anticipated by altered expression of stress-related genes that may warn the imminent seagrass collapse. Management of local stressors, such as nutrient pollution, may enhance seagrass resilience in the face of the intensification of extreme climate events, such as floods.
Human disturbances, such as anchoring and dredging, can cause physical removal of seagrass rhizomes and shoots, leading to the fragmentation of meadows. The introduced green alga, Caulerpa racemosa, is widely spread in the North-West Mediterranean and, although it can establish in both degraded and pristine environments, its ability to become a dominant component of macroalgal assemblages seems greater in the former. The aim of this study was to estimate whether the spread of C. racemosa depends on the intensity of disturbance to the canopy structure of Posidonia oceanica. A field experiment was started in July 2010 when habitat complexity of a P. oceanica meadow was manipulated to simulate mechanical disturbances of different intensity: rhizome damage (High disturbance intensity = H), leaf removal (Low disturbance intensity = L), and undisturbed (Control = C). Disturbance was applied within plots of different size (40 x 40 cm and 80 x 80 cm), both inside and at the edge of the P. oceanica meadow, according to an orthogonal multifactorial design. In November 2011 (16 months after the start of the experiment), no C. racemosa was found inside the seagrass meadow, while, at the edge, the cover of the seaweed was dependent on disturbance intensity, being greater where the rhizomes had been damaged (H) than in leaf removal (L) or undisturbed (C) plots. The results of this study indicate that physical disturbance at the margin of seagrass meadows can promote the spread of C. racemosa
Population structure of the sea urchin Paracentrotus lividus seems to vary depending on the habitat, as, on average, urchin density is higher on rocks, and size is larger in Posidonia oceanica seagrass. Here, we tested the hypothesis that P. lividus would choose P. oceanica rather than rocky habitat due to the greater availability of shelter and food in the seagrass. We conducted 2 experiments by using aquaria divided into 2 equal sections, each containing an array of 2 habitats: natural P. oceanica (P) and rocks (R) in the first experiment and natural (NP) and artificial (AP) P. oceanica in the second (to highlight the reason for preference). Each experiment included 2 experimental stages of no-choice (Stage 1) and choice (Stage 2): in the 2 no-choice treatments, sections were filled with the same habitat, and in the 2 choice treatments, sections were filled with P and R in Expt 1 and NP and AP in Expt 2. Under the null hypothesis that preference of habitat is random, the expected numbers of sea urchins that were distributed in the 2 sections of the habitat after 24 h were estimated by using formulae derived from maximal likelihood estimates. The results evidenced a preference by P. lividus for P. oceanica habitat rather than rocky habitat in the first experiment and for natural P. oceanica rather than artificial seagrass in the second experiment, thus suggesting that P. lividus individuals searched for a well-structured habitat where they could find both shelter and food.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.